Applications of Games to Propositional Proof Complexity
暂无分享,去创建一个
[1] Nathan Linial,et al. Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas , 1986, J. Comb. Theory, Ser. A.
[2] Toniann Pitassi,et al. Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[3] Russell Impagliazzo,et al. A lower bound for DLL algorithms for k-SAT (preliminary version) , 2000, SODA '00.
[4] Phokion G. Kolaitis,et al. On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..
[5] Tomás Feder,et al. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..
[6] Eli Ben-Sasson,et al. Size space tradeoffs for resolution , 2002, STOC '02.
[7] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[8] Alasdair Urquhart. Resolution Proofs of Matching Principles , 2004, Annals of Mathematics and Artificial Intelligence.
[9] Alexander Hertel. Hamiltonian Cycles in Sparse Graphs , 2004 .
[10] G. Gentzen. Untersuchungen über das logische Schließen. II , 1935 .
[11] Jacobo Torán. Lower Bounds for Space in Resolution , 1999, CSL.
[12] Stephen A. Cook,et al. An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..
[13] Olivier Bailleux,et al. Efficient CNF Encoding of Boolean Cardinality Constraints , 2003, CP.
[14] Jakob Nordström,et al. Narrow proofs may be spacious: separating space and width in resolution , 2006, STOC '06.
[15] Alasdair Urquhart,et al. Simplified Lower Bounds for Propositional Proofs , 1996, Notre Dame J. Formal Log..
[16] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus , 1983 .
[17] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[18] Ran Raz,et al. On Interpolation and Automatization for Frege Systems , 2000, SIAM J. Comput..
[19] Nobuji Saito,et al. NP-Completeness of the Hamiltonian Cycle Problem for Bipartite Graphs , 1980 .
[20] Toniann Pitassi,et al. The complexity of resolution refinements , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[21] Samuel R. Buss,et al. The Complexity of the Disjunction and Existential Properties in Intuitionistic Logic , 1999, Ann. Pure Appl. Log..
[22] Alasdair Urquhart,et al. Game Characterizations and the PSPACE-Completeness of Tree Resolution Space , 2007, CSL.
[23] Zvi Galil,et al. On the Complexity of Regular Resolution and the Davis-Putnam Procedure , 1977, Theor. Comput. Sci..
[24] Hans Kleine Büning,et al. Aussagenlogik - Deduktion und Algorithmen , 1994, Leitfäden und Monographien der Informatik.
[25] Richard Statman,et al. Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..
[26] Peter Clote,et al. Boolean Functions and Computation Models , 2002, Texts in Theoretical Computer Science. An EATCS Series.
[27] Phokion G. Kolaitis,et al. On the Complexity of Existential Pebble Games , 2003, CSL.
[28] Bart Selman,et al. Encoding Plans in Propositional Logic , 1996, KR.
[29] Friedhelm Meyer auf der Heide,et al. A Comparison of two Variations of a Pebble Game on Graphs , 1981, Theor. Comput. Sci..
[30] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[31] Jacobo Torán,et al. Space Bounds for Resolution , 2001, Inf. Comput..
[32] Pavel Hrubes,et al. Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .
[33] Elwood S. Buffa,et al. Graph Theory with Applications , 1977 .
[34] Stephen A. Cook,et al. Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..
[35] Albert Atserias,et al. A Combinatorial Characterization of ResolutionWidth. , 2003 .
[36] Alasdair Urquhart. The relative complexity of resolution and cut-free Gentzen systems , 2005, Annals of Mathematics and Artificial Intelligence.
[37] Michael Alekhnovich,et al. Resolution Is Not Automatizable Unless W[P] Is Tractable , 2008, SIAM J. Comput..
[38] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[39] Robert E. Tarjan,et al. The pebbling problem is complete in polynomial space , 1979, SIAM J. Comput..
[40] Eli Ben-Sasson,et al. Short proofs are narrow—resolution made simple , 2001, JACM.
[41] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[42] Robert E. Tarjan,et al. Space bounds for a game on graphs , 1976, STOC '76.
[43] Chin-Liang Chang. The Unit Proof and the Input Proof in Theorem Proving , 1970, JACM.
[44] Shigeki Iwata,et al. Classes of Pebble Games and Complete Problems , 1979, SIAM J. Comput..
[45] Bart Selman,et al. Ten Challenges Redux: Recent Progress in Propositional Reasoning and Search , 2003, CP.
[46] Michael Alekhnovich,et al. An exponential separation between regular and general resolution , 2002, STOC '02.
[47] David G. Mitchell,et al. Minimum 2CNF Resolution Refutations in Polynomial Time , 2007, SAT.
[48] Miklós Ajtai,et al. ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..
[49] Michael Alekhnovich,et al. Space complexity in propositional calculus , 2000, STOC '00.
[50] J. Håstad. Computational limitations of small-depth circuits , 1987 .
[51] Armin Haken,et al. The Intractability of Resolution , 1985, Theor. Comput. Sci..
[52] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[53] Alasdair Urquhart,et al. The Resolution Width Problem is EXPTIME-Complete , 2006, Electron. Colloquium Comput. Complex..
[54] P. Beame. A switching lemma primer , 1994 .
[55] N. Biggs. THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .
[56] Jacobo Torán,et al. A combinatorial characterization of treelike resolution space , 2003, Inf. Process. Lett..
[57] Toniann Pitassi,et al. Exponential Time/Space Speedups for Resolution and the PSPACE-completeness of Black-White Pebbling , 2007, FOCS 2007.
[58] Alasdair Urquhart. Width Versus Size in Resolution Proofs , 2006, TAMC.
[59] Stephen A. Cook,et al. The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.
[60] Alasdair Urquhart,et al. Algorithms and Complexity Results for Input and Unit Resolution , 2009, J. Satisf. Boolean Model. Comput..
[61] A. Urquhart,et al. Algorithms & Complexity Results for Input & Unit Resolution , 2008 .
[62] Bart Selman,et al. Ten Challenges in Propositional Reasoning and Search , 1997, IJCAI.
[63] Esteban Ángeles,et al. Complexity measures for resolution , 2003 .
[64] Walter J. Savitch,et al. Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..
[65] Samuel R. Buss,et al. Resolution Proofs of Generalized Pigeonhole Principles , 1988, Theor. Comput. Sci..
[66] Eli Ben-Sasson,et al. Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..
[67] Toniann Pitassi,et al. Exponential Time/Space Speedups for Resolution and the PSPACE-completeness of Black-White Pebbling , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).
[68] Stephen A. Cook,et al. Storage requirements for deterministic / polynomial time recognizable languages , 1974, STOC '74.
[69] Alasdair Urquhart,et al. Comments on ECCC Report TR06-133: The Resolution Width Problem is EXPTIME-Complete , 2009, Electron. Colloquium Comput. Complex..
[70] Henry A. Kautz,et al. Understanding the power of clause learning , 2003, IJCAI 2003.
[71] Alasdair Urquhart,et al. Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .
[72] Toniann Pitassi,et al. The complexity of analytic tableaux , 2001, STOC '01.
[73] Samuel R. Buss,et al. On the computational content of intuitionistic propositional proofs , 2001, Ann. Pure Appl. Log..
[74] Russell Impagliazzo,et al. Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.
[75] Marcello D'Agostino,et al. Are tableaux an improvement on truth-tables? , 1992, J. Log. Lang. Inf..
[76] Andrzej Lingas. A PSPACE Complete Problem Related to a Pebble Game , 1978, ICALP.
[77] S. Louis Hakimi,et al. Recognizing tough graphs is NP-hard , 1990, Discret. Appl. Math..
[78] M. E. Szabo,et al. The collected papers of Gerhard Gentzen , 1969 .
[79] K. Subramani. Optimal length tree-like resolution refutations for 2SAT formulas , 2004, TOCL.
[80] Ran Raz,et al. Lower bounds for cutting planes proofs with small coefficients , 1995, STOC '95.
[81] Richard Statman,et al. Logic for computer scientists , 1989 .
[82] Neil D. Jones,et al. Complete problems for deterministic polynomial time , 1974, STOC '74.
[83] J. Neumann. Zur Hilbertschen Beweistheorie , 1927 .
[84] David A. Plaisted. Complete Problems in the First-Order Predicate Calculus , 1984, J. Comput. Syst. Sci..
[85] Alexander A. Razborov,et al. Complexity of Propositional Proofs , 2010, CSR.
[86] Hans Kleine Büning,et al. An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF , 1998, Annals of Mathematics and Artificial Intelligence.
[87] Toniann Pitassi,et al. The complexity of the Hajos calculus , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[88] Larry J. Stockmeyer,et al. The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..
[89] Albert Atserias,et al. On sufficient conditions for unsatisfiability of random formulas , 2004, JACM.
[90] ACM doctoral dissertation award , 1984 .
[91] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[92] Toniann Pitassi,et al. Clause Learning Can Effectively P-Simulate General Propositional Resolution , 2008, AAAI.
[93] Albert Atserias,et al. A combinatorial characterization of resolution width , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..
[94] Michael Alekhnovich,et al. Minimum propositional proof length is NP-hard to linearly approximate , 1998, Journal of Symbolic Logic.
[95] David S. Johnson,et al. The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..
[96] Michael Sipser,et al. Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[97] Jocelyne Bédard,et al. New-York, 1985 , 2005 .
[98] Robert E. Tarjan,et al. Space Bounds for a Game of Graphs , 1976, STOC.
[99] M. S. Krishnamoorthy,et al. An NP-hard problem in bipartite graphs , 1975, SIGA.