Applications of Games to Propositional Proof Complexity

In this thesis we explore a number of ways in which combinatorial games can be used to help prove results in the area of propositional proof complexity. The results in this thesis can be divided into two sets, the first being dedicated to the study of Resolution space (memory) requirements, whereas the second is centered on formalizing the notion of 'dangerous' reductions. The first group of results investigate Resolution space measures by asking questions of the form, 'Given a formula F and integer k, does F have a [Type of Resolution] proof with [Type of Resource] at most k?' We refer to this as a proof complexity resource problem, and provide comprehensive results for several forms of Resolution as well as various resources. These results include the PSPACE-Completeness of Tree Resolution clause space (and the Prover/Delayer game), the PSPACE-Completeness of Input Resolution derivation total space, and the PSPACE-Hardness of Resolution variable space. This research has theoretical as well as practical motivations: Proof complexity research has focused on the size of proofs, and Resolution space requirements are an interesting new theoretical area of study. In more practical terms, the Resolution proof system forms the underpinnings of all modern SAT-solving algorithms, including clause learning. In practice, the limiting factor on these algorithms is memory space, so there is a strong motivation for better understanding it as a resource. With the second group of results in this thesis we investigate and formalize what it means for a reduction to be 'dangerous'. The area of SAT-solving necessarily employs reductions in order to translate from other domains to SAT, where the power of highly-optimized algorithms can be brought to bear. Researchers have empirically observed that it is unfortunately possible for reductions to map easy instances from the input domain to hard SAT instances. We develop a non-Hamiltonicity proof system and combine it with additional results concerning the Prover/Delayer game from the first part of this thesis as well as proof complexity results for intuitionistic logic in order to provide the first formal examples of harmful and beneficial reductions, ultimately leading to the development of a framework for studying and comparing translations from one language to another.

[1]  Nathan Linial,et al.  Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas , 1986, J. Comb. Theory, Ser. A.

[2]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  Russell Impagliazzo,et al.  A lower bound for DLL algorithms for k-SAT (preliminary version) , 2000, SODA '00.

[4]  Phokion G. Kolaitis,et al.  On the expressive power of datalog: tools and a case study , 1990, J. Comput. Syst. Sci..

[5]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[6]  Eli Ben-Sasson,et al.  Size space tradeoffs for resolution , 2002, STOC '02.

[7]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[8]  Alasdair Urquhart Resolution Proofs of Matching Principles , 2004, Annals of Mathematics and Artificial Intelligence.

[9]  Alexander Hertel Hamiltonian Cycles in Sparse Graphs , 2004 .

[10]  G. Gentzen Untersuchungen über das logische Schließen. II , 1935 .

[11]  Jacobo Torán Lower Bounds for Space in Resolution , 1999, CSL.

[12]  Stephen A. Cook,et al.  An observation on time-storage trade off , 1973, J. Comput. Syst. Sci..

[13]  Olivier Bailleux,et al.  Efficient CNF Encoding of Boolean Cardinality Constraints , 2003, CP.

[14]  Jakob Nordström,et al.  Narrow proofs may be spacious: separating space and width in resolution , 2006, STOC '06.

[15]  Alasdair Urquhart,et al.  Simplified Lower Bounds for Propositional Proofs , 1996, Notre Dame J. Formal Log..

[16]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[17]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[18]  Ran Raz,et al.  On Interpolation and Automatization for Frege Systems , 2000, SIAM J. Comput..

[19]  Nobuji Saito,et al.  NP-Completeness of the Hamiltonian Cycle Problem for Bipartite Graphs , 1980 .

[20]  Toniann Pitassi,et al.  The complexity of resolution refinements , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[21]  Samuel R. Buss,et al.  The Complexity of the Disjunction and Existential Properties in Intuitionistic Logic , 1999, Ann. Pure Appl. Log..

[22]  Alasdair Urquhart,et al.  Game Characterizations and the PSPACE-Completeness of Tree Resolution Space , 2007, CSL.

[23]  Zvi Galil,et al.  On the Complexity of Regular Resolution and the Davis-Putnam Procedure , 1977, Theor. Comput. Sci..

[24]  Hans Kleine Büning,et al.  Aussagenlogik - Deduktion und Algorithmen , 1994, Leitfäden und Monographien der Informatik.

[25]  Richard Statman,et al.  Intuitionistic Propositional Logic is Polynomial-Space Complete , 1979, Theor. Comput. Sci..

[26]  Peter Clote,et al.  Boolean Functions and Computation Models , 2002, Texts in Theoretical Computer Science. An EATCS Series.

[27]  Phokion G. Kolaitis,et al.  On the Complexity of Existential Pebble Games , 2003, CSL.

[28]  Bart Selman,et al.  Encoding Plans in Propositional Logic , 1996, KR.

[29]  Friedhelm Meyer auf der Heide,et al.  A Comparison of two Variations of a Pebble Game on Graphs , 1981, Theor. Comput. Sci..

[30]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[31]  Jacobo Torán,et al.  Space Bounds for Resolution , 2001, Inf. Comput..

[32]  Pavel Hrubes,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[33]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[34]  Stephen A. Cook,et al.  Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..

[35]  Albert Atserias,et al.  A Combinatorial Characterization of ResolutionWidth. , 2003 .

[36]  Alasdair Urquhart The relative complexity of resolution and cut-free Gentzen systems , 2005, Annals of Mathematics and Artificial Intelligence.

[37]  Michael Alekhnovich,et al.  Resolution Is Not Automatizable Unless W[P] Is Tractable , 2008, SIAM J. Comput..

[38]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[39]  Robert E. Tarjan,et al.  The pebbling problem is complete in polynomial space , 1979, SIAM J. Comput..

[40]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[41]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[42]  Robert E. Tarjan,et al.  Space bounds for a game on graphs , 1976, STOC '76.

[43]  Chin-Liang Chang The Unit Proof and the Input Proof in Theorem Proving , 1970, JACM.

[44]  Shigeki Iwata,et al.  Classes of Pebble Games and Complete Problems , 1979, SIAM J. Comput..

[45]  Bart Selman,et al.  Ten Challenges Redux: Recent Progress in Propositional Reasoning and Search , 2003, CP.

[46]  Michael Alekhnovich,et al.  An exponential separation between regular and general resolution , 2002, STOC '02.

[47]  David G. Mitchell,et al.  Minimum 2CNF Resolution Refutations in Polynomial Time , 2007, SAT.

[48]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[49]  Michael Alekhnovich,et al.  Space complexity in propositional calculus , 2000, STOC '00.

[50]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[51]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[52]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[53]  Alasdair Urquhart,et al.  The Resolution Width Problem is EXPTIME-Complete , 2006, Electron. Colloquium Comput. Complex..

[54]  P. Beame A switching lemma primer , 1994 .

[55]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[56]  Jacobo Torán,et al.  A combinatorial characterization of treelike resolution space , 2003, Inf. Process. Lett..

[57]  Toniann Pitassi,et al.  Exponential Time/Space Speedups for Resolution and the PSPACE-completeness of Black-White Pebbling , 2007, FOCS 2007.

[58]  Alasdair Urquhart Width Versus Size in Resolution Proofs , 2006, TAMC.

[59]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[60]  Alasdair Urquhart,et al.  Algorithms and Complexity Results for Input and Unit Resolution , 2009, J. Satisf. Boolean Model. Comput..

[61]  A. Urquhart,et al.  Algorithms & Complexity Results for Input & Unit Resolution , 2008 .

[62]  Bart Selman,et al.  Ten Challenges in Propositional Reasoning and Search , 1997, IJCAI.

[63]  Esteban Ángeles,et al.  Complexity measures for resolution , 2003 .

[64]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[65]  Samuel R. Buss,et al.  Resolution Proofs of Generalized Pigeonhole Principles , 1988, Theor. Comput. Sci..

[66]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[67]  Toniann Pitassi,et al.  Exponential Time/Space Speedups for Resolution and the PSPACE-completeness of Black-White Pebbling , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[68]  Stephen A. Cook,et al.  Storage requirements for deterministic / polynomial time recognizable languages , 1974, STOC '74.

[69]  Alasdair Urquhart,et al.  Comments on ECCC Report TR06-133: The Resolution Width Problem is EXPTIME-Complete , 2009, Electron. Colloquium Comput. Complex..

[70]  Henry A. Kautz,et al.  Understanding the power of clause learning , 2003, IJCAI 2003.

[71]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[72]  Toniann Pitassi,et al.  The complexity of analytic tableaux , 2001, STOC '01.

[73]  Samuel R. Buss,et al.  On the computational content of intuitionistic propositional proofs , 2001, Ann. Pure Appl. Log..

[74]  Russell Impagliazzo,et al.  Using the Groebner basis algorithm to find proofs of unsatisfiability , 1996, STOC '96.

[75]  Marcello D'Agostino,et al.  Are tableaux an improvement on truth-tables? , 1992, J. Log. Lang. Inf..

[76]  Andrzej Lingas A PSPACE Complete Problem Related to a Pebble Game , 1978, ICALP.

[77]  S. Louis Hakimi,et al.  Recognizing tough graphs is NP-hard , 1990, Discret. Appl. Math..

[78]  M. E. Szabo,et al.  The collected papers of Gerhard Gentzen , 1969 .

[79]  K. Subramani Optimal length tree-like resolution refutations for 2SAT formulas , 2004, TOCL.

[80]  Ran Raz,et al.  Lower bounds for cutting planes proofs with small coefficients , 1995, STOC '95.

[81]  Richard Statman,et al.  Logic for computer scientists , 1989 .

[82]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, STOC '74.

[83]  J. Neumann Zur Hilbertschen Beweistheorie , 1927 .

[84]  David A. Plaisted Complete Problems in the First-Order Predicate Calculus , 1984, J. Comput. Syst. Sci..

[85]  Alexander A. Razborov,et al.  Complexity of Propositional Proofs , 2010, CSR.

[86]  Hans Kleine Büning,et al.  An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF , 1998, Annals of Mathematics and Artificial Intelligence.

[87]  Toniann Pitassi,et al.  The complexity of the Hajos calculus , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[88]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[89]  Albert Atserias,et al.  On sufficient conditions for unsatisfiability of random formulas , 2004, JACM.

[90]  ACM doctoral dissertation award , 1984 .

[91]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[92]  Toniann Pitassi,et al.  Clause Learning Can Effectively P-Simulate General Propositional Resolution , 2008, AAAI.

[93]  Albert Atserias,et al.  A combinatorial characterization of resolution width , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[94]  Michael Alekhnovich,et al.  Minimum propositional proof length is NP-hard to linearly approximate , 1998, Journal of Symbolic Logic.

[95]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[96]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[97]  Jocelyne Bédard,et al.  New-York, 1985 , 2005 .

[98]  Robert E. Tarjan,et al.  Space Bounds for a Game of Graphs , 1976, STOC.

[99]  M. S. Krishnamoorthy,et al.  An NP-hard problem in bipartite graphs , 1975, SIGA.