Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model

Synaptic plasticity, which underlies learning and memory, depends on calcium elevation in neurons, but the precise relationship between calcium and spatiotemporal patterns of synaptic inputs is unclear. Here, we develop a biologically realistic computational model of striatal spiny projection neurons with sophisticated calcium dynamics, based on data from rodents of both sexes, to investigate how spatiotemporally clustered and distributed excitatory and inhibitory inputs affect spine calcium. We demonstrate that coordinated excitatory synaptic inputs evoke enhanced calcium elevation specific to stimulated spines, with lower but physiologically relevant calcium elevation in nearby non-stimulated spines. Results further show a novel and important function of inhibition—to enhance the difference in calcium between stimulated and non-stimulated spines. These findings suggest that spine calcium dynamics encode synaptic input patterns and may serve as a signal for both stimulus-specific potentiation and heterosynaptic depression, maintaining balanced activity in a dendritic branch while inducing pattern-specific plasticity.

[1]  D. Surmeier,et al.  Kv4.2 mRNA Abundance and A-Type K+ Current Amplitude Are Linearly Related in Basal Ganglia and Basal Forebrain Neurons , 2000, The Journal of Neuroscience.

[2]  Ravi Iyengar,et al.  Decoding Information in Cell Shape , 2013, Cell.

[3]  D. James Surmeier,et al.  G-Protein-Coupled Receptor Modulation of Striatal CaV1.3 L-Type Ca Channels Is Dependent on a Shank-Binding Domain , 2005 .

[4]  H. Kasai,et al.  Dihydropyridine‐sensitive and omega‐conotoxin‐sensitive calcium channels in a mammalian neuroblastoma‐glioma cell line. , 1992, The Journal of physiology.

[5]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[6]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[7]  Sho Yagishita,et al.  A critical time window for dopamine actions on the structural plasticity of dendritic spines , 2014, Science.

[8]  Padraig Gleeson,et al.  Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model , 2014, PLoS Comput. Biol..

[9]  Charles J. Wilson,et al.  Connectivity and Convergence of Single Corticostriatal Axons , 1998, The Journal of Neuroscience.

[10]  James M. Bower,et al.  The book of GENESIS - exploring realistic neural models with the GEneral NEural SImulation System (2. ed.) , 1994 .

[11]  J. Wickens,et al.  A silent eligibility trace enables dopamine‐dependent synaptic plasticity for reinforcement learning in the mouse striatum , 2018, The European journal of neuroscience.

[12]  D. Surmeier,et al.  Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons. , 2004, Journal of neurophysiology.

[13]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Michael J. Higley,et al.  Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition , 2017, Neuron.

[15]  S. Schoch,et al.  Tuning Local Calcium Availability: Cell-Type-Specific Immobile Calcium Buffer Capacity in Hippocampal Neurons , 2013, The Journal of Neuroscience.

[16]  D. Plenz,et al.  Quantitative Estimate of Synaptic Inputs to Striatal Neurons during Up and Down States In Vitro , 2003, The Journal of Neuroscience.

[17]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[18]  M. Okada,et al.  Differential effects of adenosine receptor subtypes on release and reuptake of hippocampal serotonin , 1999, The European journal of neuroscience.

[19]  Henry C. Tuckwell,et al.  Quantitative aspects of L-type Ca2+ currents , 2012, Progress in Neurobiology.

[20]  Nicholas T. Carnevale,et al.  Electrical Advantages of Dendritic Spines , 2012, PloS one.

[21]  T. Bartol,et al.  Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Plenz,et al.  Dendritic Calcium Encodes Striatal Neuron Output during Up-States , 2002, The Journal of Neuroscience.

[23]  John F. Wesseling,et al.  GluN3A promotes NMDA spiking by enhancing synaptic transmission in Huntington's disease models , 2016, Neurobiology of Disease.

[24]  J. Bargas,et al.  Cellular and molecular characterization of Ca2+ currents in acutely isolated, adult rat neostriatal neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  H. G. Rotstein,et al.  Striatal Local Circuitry: A New Framework for Lateral Inhibition , 2017, Neuron.

[26]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[27]  J. Wickens,et al.  A Ca2+ Threshold for Induction of Spike-Timing-Dependent Depression in the Mouse Striatum , 2011, The Journal of Neuroscience.

[28]  E. Marder,et al.  Plasticity in single neuron and circuit computations , 2004, Nature.

[29]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[30]  M. de Curtis,et al.  Pharmacological and biophysical characterization of voltage-gated calcium currents in the endopiriform nucleus of the guinea pig. , 2001, Journal of neurophysiology.

[31]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[32]  Susumu Tonegawa,et al.  The Dendritic Branch Is the Preferred Integrative Unit for Protein Synthesis-Dependent LTP , 2011, Neuron.

[33]  A. Randall,et al.  Electrophysiological properties of the human N-type Ca2+ channel: I. Channel gating in Ca2+, Ba2+ and Sr2+ containing solutions , 1997, Neuropharmacology.

[34]  Joseph J. Marlin,et al.  GABA-A Receptor Inhibition of Local Calcium Signaling in Spines and Dendrites , 2014, The Journal of Neuroscience.

[35]  J. Tepper,et al.  A Novel Functionally Distinct Subtype of Striatal Neuropeptide Y Interneuron , 2011, The Journal of Neuroscience.

[36]  Urit Gordon,et al.  Plasticity Compartments in Basal Dendrites of Neocortical Pyramidal Neurons , 2006, The Journal of Neuroscience.

[37]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[38]  Bertalan K. Andrásfalvy,et al.  Location-dependent synaptic plasticity rules by dendritic spine cooperativity , 2016, Nature Communications.

[39]  D. Baillie,et al.  Molecular and Functional Characterization of a Family of Rat Brain T-type Calcium Channels* , 2001, The Journal of Biological Chemistry.

[40]  Bernardo L. Sabatini,et al.  Competitive regulation of synaptic Ca influx by D2 dopamine and A2A adenosine receptors , 2010, Nature Neuroscience.

[41]  B. Sabatini,et al.  Calcium Signaling in Dendrites and Spines: Practical and Functional Considerations , 2008, Neuron.

[42]  F. Helmchen,et al.  Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells , 2016, Nature Communications.

[43]  C. Wilson,et al.  Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[45]  K. Blackwell,et al.  Calcium: Amplitude, Duration, or Location? , 2015, The Biological Bulletin.

[46]  T. Sejnowski,et al.  Computational reconstitution of spine calcium transients from individual proteins , 2015, Front. Synaptic Neurosci..

[47]  Rohit Manchanda,et al.  Differences in biophysical properties of nucleus accumbens medium spiny neurons emerging from inactivation of inward rectifying potassium currents , 2007, BMC Neuroscience.

[48]  Wen-Liang L Zhou,et al.  The decade of the dendritic NMDA spike , 2010, Journal of neuroscience research.

[49]  P. Bearman,et al.  Correction for Graupner and Brunel, Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location , 2012, Proceedings of the National Academy of Sciences.

[50]  D. Surmeier,et al.  Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons , 2008, The Journal of Neuroscience.

[51]  Bernd Kuhn,et al.  Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models , 2014, Front. Cell. Neurosci..

[52]  N. Ogata,et al.  Sodium current kinetics in freshly isolated neostriatal neurones of the adult guinea pig , 1990, Pflügers Archiv.

[53]  Idan Segev,et al.  The role of dendritic inhibition in shaping the plasticity of excitatory synapses , 2013, Front. Neural Circuits.

[54]  Anatol C. Kreitzer,et al.  Striatal Plasticity and Basal Ganglia Circuit Function , 2008, Neuron.

[55]  M. Häusser,et al.  The single dendritic branch as a fundamental functional unit in the nervous system , 2010, Current Opinion in Neurobiology.

[56]  BKCa-Cav Channel Complexes Mediate Rapid and Localized Ca2+-Activated K+ Signaling , 2006, Science.

[57]  Joshua L. Plotkin,et al.  Synaptically driven state transitions in distal dendrites of striatal spiny neurons , 2011, Nature Neuroscience.

[58]  M. Mikhaylova,et al.  Talking to the neighbours: The molecular and physiological mechanisms of clustered synaptic plasticity , 2016, Neuroscience & Biobehavioral Reviews.

[59]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[60]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[61]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[62]  C. Bidoret,et al.  Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons , 2015, Front. Synaptic Neurosci..

[63]  栁下 祥 A critical time window for dopamine actions on the structural plasticity of dendritic spines , 2016 .

[64]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[65]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[66]  D. T. Yue,et al.  Unified Mechanisms of Ca2+ Regulation across the Ca2+ Channel Family , 2003, Neuron.

[67]  T. Sejnowski,et al.  Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium , 2019, The Journal of general physiology.

[68]  Bernardo Luis Sabatini,et al.  Principles of Synaptic Organization of GABAergic Interneurons in the Striatum , 2016, Neuron.

[69]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.

[70]  Charles J. Wilson,et al.  Comparison of IPSCs Evoked by Spiny and Fast-Spiking Neurons in the Neostriatum , 2004, The Journal of Neuroscience.

[71]  Charles J. Wilson Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons , 1992 .

[72]  G. Stiny Shape , 1999 .

[73]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[74]  L. Parajuli,et al.  Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. , 2015, Cell reports.

[75]  S. Panzeri,et al.  Excitatory GABAergic effects in striatal projection neurons. , 2006, Journal of neurophysiology.

[76]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[77]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[78]  Joshua L Plotkin,et al.  Differential Excitability and Modulation of Striatal Medium Spiny Neuron Dendrites , 2008, The Journal of Neuroscience.

[79]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[80]  Michael E. Greenberg,et al.  From Synapse to Nucleus: Calcium-Dependent Gene Transcription in the Control of Synapse Development and Function , 2008, Neuron.

[81]  J. Tepper,et al.  Heterogeneity and Diversity of Striatal GABAergic Interneurons , 2010, Front. Neuroanat..

[82]  D. Clapham,et al.  NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation , 1998, Nature Neuroscience.

[83]  P. Mermelstein,et al.  Unique properties of R-type calcium currents in neocortical and neostriatal neurons. , 2000, Journal of neurophysiology.

[84]  J. Adelman,et al.  Small conductance Ca2+‐activated K+ channels and calmodulin , 2004, The Journal of physiology.

[85]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[86]  Jeffery R. Wickens,et al.  Optimal Balance of the Striatal Medium Spiny Neuron Network , 2013, PLoS Comput. Biol..

[87]  Henry Markram,et al.  Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. , 2017, Cell reports.

[88]  Judit K. Makara,et al.  Variable Dendritic Integration in Hippocampal CA3 Pyramidal Neurons , 2013, Neuron.

[89]  Jun B. Ding,et al.  Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons , 2017, Proceedings of the National Academy of Sciences.

[90]  Charles J. Wilson,et al.  Striatal interneurones: chemical, physiological and morphological characterization , 1995, Trends in Neurosciences.

[91]  Sriraman Damodaran,et al.  Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons , 2017, The European journal of neuroscience.

[92]  S. Antic,et al.  Spiny neurons of amygdala, striatum, and cortex use dendritic plateau potentials to detect network UP states , 2014, Front. Cell. Neurosci..

[93]  Charles J. Wilson,et al.  The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  Beat Lutz,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons : A New Unifying Principle , 2009 .