A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition

The majority of the research related to visual recognition has so far focused on bottom-up analysis, where the input is processed in a cascade of cortical regions that analyze increasingly complex information. Gradually more studies emphasize the role of top-down facilitation in cortical analysis, but it remains something of a mystery how such processing would be initiated. After all, top-down facilitation implies that high-level information is activated earlier than some relevant lower-level information. Building on previous studies, I propose a specific mechanism for the activation of top-down facilitation during visual object recognition. The gist of this hypothesis is that a partially analyzed version of the input image (i.e., a blurred image) is projected rapidly from early visual areas directly to the prefrontal cortex (PFC). This coarse representation activates in the PFC expectations about the most likely interpretations of the input image, which are then back-projected as an initial guess to the temporal cortex to be integrated with the bottom-up analysis. The top-down process facilitates recognition by substantially limiting the number of object representations that need to be considered. Furthermore, such a rapid mechanism may provide critical information when a quick response is necessary.

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  J. Robson,et al.  Spatial-frequency channels in human vision. , 1971, Journal of the Optical Society of America.

[3]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[4]  tephen E. Palmer The effects of contextual scenes on the identification of objects , 1975, Memory & cognition.

[5]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[6]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[7]  J. Eccles The emotional brain. , 1980, Bulletin et memoires de l'Academie royale de medecine de Belgique.

[8]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[9]  H. Spinnler The prefrontal cortex, Anatomy, physiology, and neuropsychology of the frontal lobe, J.M. Fuster. Raven Press, New York (1980), IX-222 pages , 1981 .

[10]  P. Goldman-Rakic,et al.  Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys , 1981, The Journal of comparative neurology.

[11]  Marie Bienkowski,et al.  Automatic access of the meanings of ambiguous words in context: Some limitations of knowledge-based processing , 1982, Cognitive Psychology.

[12]  G. Simpson Lexical ambiguity and its role in models of word recognition. , 1984, Psychological bulletin.

[13]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[14]  M. Voytko Cooling orbital frontal cortex disrupts matching-to-sample and visual discrimination learning in monkeys , 1985 .

[15]  P. Goldman-Rakic,et al.  The primate mediodorsal (MD) nucleus and its projection to the frontal lobe , 1985, The Journal of comparative neurology.

[16]  Mortimer Mishkin,et al.  Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys , 1986, Behavioural Brain Research.

[17]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[18]  D. Amaral,et al.  The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis , 1987, The Journal of comparative neurology.

[19]  Further Evidence for Focal Effect of Right Hemisphere Damage on Simple Reaction Time , 1987, Cortex.

[20]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[21]  G. F. Tremblay,et al.  The Prefrontal Cortex , 1989, Neurology.

[22]  M. Posner,et al.  Positron Emission Tomographic Studies of the Processing of Singe Words , 1989, Journal of Cognitive Neuroscience.

[23]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[24]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  E Tulving,et al.  Priming and human memory systems. , 1990, Science.

[26]  P. Goldman-Rakic,et al.  Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. , 1990, Journal of neurophysiology.

[27]  R Shapley,et al.  Visual sensitivity and parallel retinocortical channels. , 1990, Annual review of psychology.

[28]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[29]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[30]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[31]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[32]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[33]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[35]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[36]  R. Desimone,et al.  The representation of stimulus familiarity in anterior inferior temporal cortex. , 1993, Journal of neurophysiology.

[37]  S. Kosslyn,et al.  Visual Mental Imagery Activates Topographically Organized Visual Cortex: PET Investigations , 1993, Journal of Cognitive Neuroscience.

[38]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  S. Kosslyn Image and Brain , 1994 .

[40]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[41]  E. Halgren,et al.  Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices , 1994, Journal of Physiology-Paris.

[42]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[43]  Jemett L. Desmond,et al.  Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[45]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[46]  G Kovács,et al.  Cortical correlate of pattern backward masking. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Bullier,et al.  Parallel versus serial processing: new vistas on the distributed organization of the visual system , 1995, Current Opinion in Neurobiology.

[48]  F. Miezin,et al.  Functional anatomical studies of explicit and implicit memory retrieval tasks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  P. Goldman-Rakic Architecture of the Prefrontal Cortex and the Central Executive , 1995, Annals of the New York Academy of Sciences.

[50]  H. Barbas,et al.  Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex , 1995, Neuroscience & Biobehavioral Reviews.

[51]  M. Corbetta,et al.  Top-down modulation of early sensory cortex , 1996, NeuroImage.

[52]  S. Ullman,et al.  Spatial Context in Recognition , 1996, Perception.

[53]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[54]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[55]  A. Damasio,et al.  Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. , 1996, Cerebral cortex.

[56]  H. Hughes,et al.  Global Precedence, Spatial Frequency Channels, and the Statistics of Natural Images , 1996, Journal of Cognitive Neuroscience.

[57]  T. Mergner,et al.  Visual discrimination and short-term memory for random patterns in patients with a focal cortical lesion. , 1997, Cerebral cortex.

[58]  C Frith,et al.  Brain mechanisms associated with top-down processes in perception. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  R. Passingham,et al.  Ventral Prefrontal Cortex Is Not Essential for Working Memory , 1997, The Journal of Neuroscience.

[60]  J. Fiez Phonology, Semantics, and the Role of the Left Inferior Prefrontal Cortex , 2022 .

[61]  M. Mishkin,et al.  Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys , 1997, Neuropsychologia.

[62]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[63]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[64]  D. Schacter,et al.  Priming and the Brain , 1998, Neuron.

[65]  R. Desimone Visual attention mediated by biased competition in extrastriate visual cortex. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  H. Barbas,et al.  Topographic Organization of Connections between the Hypothalamus and Prefrontal Cortex in the Rhesus Monkey , 2022 .

[67]  Alex Martin,et al.  Properties and mechanisms of perceptual priming , 1998, Current Opinion in Neurobiology.

[68]  Amanda Parker,et al.  The von Restorff Effect in Visual Object Recognition Memory in Humans and Monkeys: The Role of Frontal/Perirhinal Interaction , 1998, Journal of Cognitive Neuroscience.

[69]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[70]  D. Perrett,et al.  Dissociable neural responses to facial expressions of sadness and anger. , 1999, Brain : a journal of neurology.

[71]  F. Richer,et al.  Frontal lesions and fluctuations in response preparation , 1999 .

[72]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[73]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[74]  J. Jonides,et al.  Storage and executive processes in the frontal lobes. , 1999, Science.

[75]  W. Schultz,et al.  Relative reward preference in primate orbitofrontal cortex , 1999, Nature.

[76]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[77]  Irene P. Kan,et al.  Effects of Repetition and Competition on Activity in Left Prefrontal Cortex during Word Generation , 1999, Neuron.

[78]  E. Miller,et al.  Effects of Visual Experience on the Representation of Objects in the Prefrontal Cortex , 2000, Neuron.

[79]  K. Carlsson,et al.  Tickling Expectations: Neural Processing in Anticipation of a Sensory Stimulus , 2000, Journal of Cognitive Neuroscience.

[80]  R. Spinks The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 3rd ed. , 2000 .

[81]  M Petrides,et al.  Orbitofrontal cortex: A key prefrontal region for encoding information. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[82]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[83]  Y. Miyashita,et al.  Neural representation of visual objects: encoding and top-down activation , 2000, Current Opinion in Neurobiology.

[84]  H. Barbas,et al.  The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. , 2000, Cerebral cortex.

[85]  I. Biederman,et al.  Accurate identification but no priming and chance recognition memory for pictures in RSVP sequences , 2000 .

[86]  E. Halgren,et al.  LOCALISED FACE PROCESSING BY THE HUMAN PREFRONTAL CORTEX: FACE-SELECTIVE INTRACEREBRAL POTENTIALS AND POST-LESION DEFICITS , 2000, Cognitive neuropsychology.

[87]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[88]  Valerie Treyer,et al.  Selection of Currently Relevant Memories by the Human Posterior Medial Orbitofrontal Cortex , 2000, The Journal of Neuroscience.

[89]  Karen A. Daniels,et al.  Conscious and Unconscious Processing of Nonverbal Predictability in Wernicke's Area , 2000, The Journal of Neuroscience.

[90]  M. Bar,et al.  Cortical Mechanisms Specific to Explicit Visual Object Recognition , 2001, Neuron.

[91]  A. Grabowska,et al.  Evidence for the involvement of the ventro-medial prefrontal cortex in a short-term storage of visual images , 2001, Neuroreport.

[92]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[93]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[94]  H. Tamura,et al.  Visual response properties of cells in the ventral and dorsal parts of the macaque inferotemporal cortex. , 2001, Cerebral cortex.

[95]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[96]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[97]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[98]  David J. Freedman,et al.  Categorical representation of visual stimuli in the primate prefrontal cortex. , 2001, Science.

[99]  R. Poldrack,et al.  Recovering Meaning Left Prefrontal Cortex Guides Controlled Semantic Retrieval , 2001, Neuron.

[100]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[101]  Refractor Vision , 2000, The Lancet.

[102]  I. Biederman,et al.  Inferior Temporal Neurons Show Greater Sensitivity to Nonaccidental than to Metric Shape Differences , 2001, Journal of Cognitive Neuroscience.

[103]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[104]  S. Thorpe,et al.  The Time Course of Visual Processing: From Early Perception to Decision-Making , 2001, Journal of Cognitive Neuroscience.

[105]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[106]  H. Barbas,et al.  Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey , 2002, Neuroscience.

[107]  M. Petrides,et al.  Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[108]  M. Raichle,et al.  Integration of emotion and cognition in the lateral prefrontal cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Patrik Vuilleumier,et al.  Effects of Low-Spatial Frequency Components of Fearful Faces on Fusiform Cortex Activity , 2003, Current Biology.

[110]  Manila Vannucci,et al.  Hemispheric asymmetry for spatially filtered stimuli belonging to different semantic categories. , 2004, Brain research. Cognitive brain research.

[111]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[112]  S. Thorpe,et al.  The orbitofrontal cortex: Neuronal activity in the behaving monkey , 2004, Experimental Brain Research.

[113]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[114]  J E Joseph,et al.  Developmental shifts in cortical loci for face and object recognition , 2004, Neuroreport.

[115]  Konrad P. Körding,et al.  Integrating Top-Down and Bottom-Up Sensory Processing by Somato-Dendritic Interactions , 2004, Journal of Computational Neuroscience.