Direct and Indirect Effects—An Information Theoretic Perspective

Information theoretic (IT) approaches to quantifying causal influences have experienced some popularity in the literature, in both theoretical and applied (e.g., neuroscience and climate science) domains. While these causal measures are desirable in that they are model agnostic and can capture non-linear interactions, they are fundamentally different from common statistical notions of causal influence in that they (1) compare distributions over the effect rather than values of the effect and (2) are defined with respect to random variables representing a cause rather than specific values of a cause. We here present IT measures of direct, indirect, and total causal effects. The proposed measures are unlike existing IT techniques in that they enable measuring causal effects that are defined with respect to specific values of a cause while still offering the flexibility and general applicability of IT techniques. We provide an identifiability result and demonstrate application of the proposed measures in estimating the causal effect of the El Niño–Southern Oscillation on temperature anomalies in the North American Pacific Northwest.

[1]  Daniel Polani,et al.  Information Flows in Causal Networks , 2008, Adv. Complex Syst..

[2]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[3]  Tsachy Weissman,et al.  Justification of Logarithmic Loss via the Benefit of Side Information , 2014, IEEE Transactions on Information Theory.

[4]  J. MacKinnon Bootstrap Hypothesis Testing , 2007 .

[5]  A. Gettelman,et al.  Regional Climate Simulations With the Community Earth System Model , 2018, Journal of Advances in Modeling Earth Systems.

[6]  Todd P. Coleman,et al.  Dynamic and Succinct Statistical Analysis of Neuroscience Data , 2014, Proceedings of the IEEE.

[7]  Judea Pearl,et al.  Direct and Indirect Effects , 2001, UAI.

[8]  Artemy Kolchinsky,et al.  Decomposing information into copying versus transformation , 2019, bioRxiv.

[9]  Kun Zhang,et al.  A New Measure of Conditional Dependence , 2017, 1704.00607.

[10]  Christian D. Kummerow,et al.  ENSO Influence on TRMM Tropical Oceanic Precipitation Characteristics and Rain Rates , 2018 .

[11]  J. Pearl Causal inference in statistics: An overview , 2009 .

[12]  John R. Lanzante,et al.  The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air-Sea Interaction over the Global Oceans , 2002 .

[13]  M. Degroot Uncertainty, Information, and Sequential Experiments , 1962 .

[14]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[15]  Bernhard Schölkopf,et al.  Inferring causation from time series in Earth system sciences , 2019, Nature Communications.

[16]  J. David Neelin,et al.  Variations in ENSO Phase Locking , 2000 .

[17]  Refractor Uncertainty , 2001, The Lancet.

[18]  G. A. Barnard,et al.  Transmission of Information: A Statistical Theory of Communications. , 1961 .

[19]  Min Zhong,et al.  El Niño, La Niña, and the Nonlinearity of Their Teleconnections , 1997 .

[20]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[21]  K. Hlavácková-Schindler,et al.  Causality detection based on information-theoretic approaches in time series analysis , 2007 .

[22]  Kristian Mogensen,et al.  The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment , 2019, Ocean Science.

[23]  Bernhard Schölkopf,et al.  Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .

[24]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[25]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[26]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[27]  Judea Pearl,et al.  Causal Inference , 2010 .

[28]  Jakob Runge,et al.  Quantifying information transfer and mediation along causal pathways in complex systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  H. Marko,et al.  The Bidirectional Communication Theory - A Generalization of Information Theory , 1973, IEEE Transactions on Communications.

[30]  Edward R. Cook,et al.  El Nino modulations over the past seven centuries , 2013 .

[31]  Linus Magnusson,et al.  Factors Influencing Skill Improvements in the ECMWF Forecasting System , 2013 .

[32]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[33]  Joseph T. Lizier,et al.  JIDT: An Information-Theoretic Toolkit for Studying the Dynamics of Complex Systems , 2014, Front. Robot. AI.

[34]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[35]  Todd P. Coleman,et al.  Measuring Sample Path Causal Influences With Relative Entropy , 2018, IEEE Transactions on Information Theory.

[36]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[37]  G. Hesslow Two Notes on the Probabilistic Approach to Causality , 1976, Philosophy of Science.

[38]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[39]  Fei-Fei Jin,et al.  Nonlinearity and Asymmetry of ENSO(. , 2004 .

[40]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[41]  T A Scully,et al.  El Niño. , 1997, Health systems review.

[42]  N. Vigaud,et al.  Predictability of Recurrent Weather Regimes over North America during Winter from Submonthly Reforecasts , 2018, Monthly Weather Review.

[43]  Illtyd Trethowan Causality , 1938 .

[44]  Michael Eichler,et al.  On Granger causality and the effect of interventions in time series , 2009, Lifetime data analysis.

[45]  P. Holland CAUSAL INFERENCE, PATH ANALYSIS AND RECURSIVE STRUCTURAL EQUATIONS MODELS , 1988 .

[46]  J. Pearl,et al.  Causal inference , 2011, Twenty-one Mental Models That Can Change Policing.

[47]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[48]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Moritz Grosse-Wentrup,et al.  Quantifying causal influences , 2012, 1203.6502.

[50]  Kun Zhang,et al.  A New Measure of Conditional Dependence for Causal Structural Learning , 2017, ArXiv.

[51]  Stanley B. Goldenberg,et al.  Documentation of a highly ENSO‐related sst region in the equatorial pacific: Research note , 1997 .

[52]  J. Bjerknes ATMOSPHERIC TELECONNECTIONS FROM THE EQUATORIAL PACIFIC1 , 1969 .

[53]  Joseph T. Lizier,et al.  Directed Information Measures in Neuroscience , 2014 .

[54]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[55]  Hans Marko,et al.  Die Theorie der bidirektionalen Kommunikation und ihre Anwendung auf die Nachrichtenübermittlung zwischen Menschen (Subjektive Information) , 1966, Kybernetik.

[56]  J. Robins,et al.  Identifiability and Exchangeability for Direct and Indirect Effects , 1992, Epidemiology.

[57]  Qinyu Liu,et al.  Global Warming–Induced Changes in El Niño Teleconnections over the North Pacific and North America , 2014 .

[58]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[59]  Joseph T. Lizier,et al.  Pointwise Partial Information DecompositionUsing the Specificity and Ambiguity Lattices , 2018, Entropy.

[60]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[61]  Gerd Krahmann,et al.  Formation and Propagation of Temperature Anomalies along the North Atlantic Current , 2001 .

[62]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[63]  C. Rothe Nonparametric estimation of distributional policy effects , 2010 .

[64]  Mark van der Laan,et al.  Population Intervention Causal Effects Based on Stochastic Interventions , 2012, Biometrics.

[65]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[66]  Sergio Firpo Efficient Semiparametric Estimation of Quantile Treatment Effects , 2004 .

[67]  Mikhail Prokopenko,et al.  Differentiating information transfer and causal effect , 2008, 0812.4373.

[68]  L. Goddard Information Theory , 1962, Nature.

[69]  Jisu Kim,et al.  Causal effects based on distributional distances , 2018, ArXiv.

[70]  Bin Yu,et al.  Information in the Nonstationary Case , 2009, Neural Computation.

[71]  Karola Stotz,et al.  Comparing causes: an information-theoretic approach to specificity, proportionality and stability , 2018 .