Closed loop experiment design for linear time invariant dynamical systems via LMIs

All stationary experimental conditions corresponding to a discrete-time linear time-invariant causal internally stable closed loop with real rational system and feedback controller are characterized using the Youla-Kucera parametrization. Finite dimensional parametrizations of the input spectrum and the Youla-Kucera parameter allow a wide range of closed loop experiment design problems, based on the asymptotic (in the sample size) covariance matrix for the estimated parameters, to be recast as computationally tractable convex optimization problems such as semi-definite programs. In particular, for Box-Jenkins models, a finite dimensional parametrization is provided which is able to generate all possible asymptotic covariance matrices. As a special case, the very common situation of a fixed controller during the identification experiment can be handled and optimal reference signal spectra can be computed subject to closed loop signal constraints. Finally, a brief numerical comparison with closed loop experiment design based on a high model order variance expression is presented.

[1]  Ts Ng,et al.  On maximal accuracy estimation with output power constraints , 1977 .

[2]  Xavier Bombois,et al.  LEAST DISTURBING CLOSED-LOOP IDENTIFICATION EXPERIMENT FOR CONTROL , 2005 .

[3]  H. Hjalmarsson,et al.  Optimal Input Design Using Linear Matrix Inequalities , 2000 .

[4]  T. Söderström,et al.  A useful input parameterization for optimal experiment design , 1982 .

[5]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Shinji Hara,et al.  Generalized KYP lemma: unified frequency domain inequalities with design applications , 2005, IEEE Transactions on Automatic Control.

[7]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[8]  H. Hjalmarsson,et al.  On Some Robustness Issues in Input Design , 2006 .

[9]  Lennart Ljung,et al.  Optimal experiment designs with respect to the intended model application , 1986, Autom..

[10]  Michel Gevers,et al.  Identification For Control: Optimal Input Design With Respect To A Worst-Case $\nu$-gap Cost Function , 2002, SIAM J. Control. Optim..

[11]  V. Kučera Stability of Discrete Linear Feedback Systems , 1975 .

[12]  Håkan Hjalmarsson,et al.  For model-based control design, closed-loop identification gives better performance , 1996, Autom..

[13]  C. Carathéodory Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .

[14]  Brian D. O. Anderson,et al.  A new approach to adaptive robust control , 1993 .

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  Roland Hildebrand,et al.  Identification for control: Optimal input intended to identify a minimum variance controller , 2007, Autom..

[17]  Graham C. Goodwin,et al.  Choosing Between Open- and Closed-Loop Experiments in Linear System Identification , 2007, IEEE Transactions on Automatic Control.

[18]  Dante C. Youla,et al.  Modern Wiener-Hopf Design of Optimal Controllers. Part I , 1976 .

[19]  Orest Iftime,et al.  Proceedings of the 16th IFAC World congress , 2006 .

[20]  Håkan Hjalmarsson,et al.  Input design via LMIs admitting frequency-wise model specifications in confidence regions , 2005, IEEE Transactions on Automatic Control.

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  L. Ljung Asymptotic variance expressions for identified black-box transfer function models , 1984, The 23rd IEEE Conference on Decision and Control.

[23]  Xavier Bombois,et al.  Least costly identification experiment for control , 2006, Autom..

[24]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[26]  Lennart Ljung,et al.  Some results on optimal experiment design , 2000, Autom..

[27]  Lennart Ljung,et al.  Identification of processes in closed loop - identifiability and accuracy aspects , 1977, Autom..

[28]  Michel Gevers,et al.  Iterative weighted least-squares identification and weighted LQG control design , 1995, Autom..

[29]  Graham C. Goodwin,et al.  Robust optimal experiment design for system identification , 2007, Autom..

[30]  Raman K. Mehra,et al.  Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .

[31]  Håkan Hjalmarsson,et al.  Robust Input Design Using Sum of Squares Constraints , 2006 .

[32]  Eric Walter,et al.  Qualitative and quantitative experiment design for phenomenological models - A survey , 1990, Autom..

[33]  Håkan Hjalmarsson,et al.  Identification for control: adaptive input design using convex optimization , 2001 .

[34]  Israel Gohberg,et al.  The band method for positive and strictly contractive extension problems: An alternative version and new applications , 1989 .

[35]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[36]  T. Başar The Solution of Certain Matrix Inequalities in Automatic Control Theory , 2001 .

[37]  Tung-Sang Ng,et al.  Optimal experiment design for linear systems with input-output constraints , 1977, Autom..