Behaviour Trees for Evolutionary Robotics

Evolutionary Robotics allows robots with limited sensors and processing to tackle complex tasks by means of sensory-motor coordination. In this article we show the first application of the Behavior Tree framework on a real robotic platform using the evolutionary robotics methodology. This framework is used to improve the intelligibility of the emergent robotic behavior over that of the traditional neural network formulation. As a result, the behavior is easier to comprehend and manually adapt when crossing the reality gap from simulation to reality. This functionality is shown by performing real-world flight tests with the 20-g DelFly Explorer flapping wing micro air vehicle equipped with a 4-g onboard stereo vision system. The experiments show that the DelFly can fully autonomously search for and fly through a window with only its onboard sensors and processing. The success rate of the optimized behavior in simulation is 88%, and the corresponding real-world performance is 54% after user adaptation. Although this leaves room for improvement, it is higher than the 46% success rate from a tuned user-defined controller.

[1]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[2]  R. Geoff Dromey,et al.  From requirements to design: formalizing the key steps , 2003, First International Conference onSoftware Engineering and Formal Methods, 2003.Proceedings..

[3]  B. Remes,et al.  Design, Aerodynamics, and Vision-Based Control of the DelFly , 2009 .

[4]  Javier Ruiz-del-Solar,et al.  Combining Simulation and Reality in Evolutionary Robotics , 2007, J. Intell. Robotic Syst..

[5]  Dario Floreano,et al.  Fly-inspired visual steering of an ultralight indoor aircraft , 2006, IEEE Transactions on Robotics.

[6]  Stefano Nolfi,et al.  Learning to Adapt to Changing Environments in Evolving Neural Networks , 1996, Adapt. Behav..

[7]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[8]  Sanaz Mostaghim,et al.  Decentralized evolution of robotic behavior using finite state machines , 2009, Int. J. Intell. Comput. Cybern..

[9]  Pavel Petrovic Evolving Behavior Coordination for Mobile Robots Using Distributed Finite-State Automata , 2008 .

[10]  Ronald S. Fearing,et al.  Cooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station , 2013, AAMAS.

[11]  Cédric Hartland,et al.  Evolutionary Robotics, Anticipation and the Reality Gap , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[12]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[13]  Wilfried Elmenreich,et al.  Towards the light — Comparing evolved neural network controllers and Finite State Machine controllers , 2012, Proceedings of the 10th International Workshop on Intelligent Solutions in Embedded Systems.

[14]  Mauro Birattari,et al.  AutoMoDe: A novel approach to the automatic design of control software for robot swarms , 2014, Swarm Intelligence.

[15]  Man Ieee Systems,et al.  IEEE transactions on systems, man and cybernetics. Part B, Cybernetics , 1996 .

[16]  Inman Harvey,et al.  Noise and the Reality Gap: The Use of Simulation in Evolutionary Robotics , 1995, ECAL.

[17]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[18]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[19]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[20]  John R. Koza,et al.  Genetic programming as a means for programming computers by natural selection , 1994 .

[21]  D. Floreano,et al.  Evolutionary Robotics: The Biology,Intelligence,and Technology , 2000 .

[22]  Inman Harvey,et al.  Seeing the Light: Artiicial Evolution, Real Vision Seeing the Light: Artiicial Evolution, Real Vision , 1994 .

[23]  Lisa Meeden,et al.  Bridging The Gap Between Robot Simulations And Reality With Improved Models Of Sensor Noise , 1998 .

[24]  Francesco Mondada,et al.  Evolution of homing navigation in a real mobile robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Ian Millington,et al.  Artificial Intelligence for Games, Second Edition , 2009 .

[27]  Anthony Brabazon,et al.  Reactiveness and navigation in computer games: Different needs, different approaches , 2011, 2011 IEEE Conference on Computational Intelligence and Games (CIG'11).

[28]  Simon Colton,et al.  Evolving Behaviour Trees for the Commercial Game DEFCON , 2010, EvoApplications.

[29]  Stephan M. Winkler,et al.  Genetic Algorithms and Genetic Programming , 2010 .

[30]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[31]  Anthony Brabazon,et al.  Evolving Behaviour Trees for the Mario AI Competition Using Grammatical Evolution , 2011, EvoApplications.

[32]  Francesco Mondada,et al.  Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot , 1994 .

[33]  Dario Floreano,et al.  Neuroevolution: from architectures to learning , 2008, Evol. Intell..

[34]  B. Remes,et al.  Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data , 2013 .

[35]  Inman Harvey,et al.  Evolutionary Robotics: A New Scientific Tool for Studying Cognition , 2005, Artificial Life.

[36]  Ian Millington,et al.  Artificial Intelligence for Games , 2006, The Morgan Kaufmann series in interactive 3D technology.

[37]  Stefano Nolfi,et al.  Power and the limits of reactive agents , 2002, Neurocomputing.

[38]  Dario Izzo,et al.  An evolutionary robotics approach for the distributed control of satellite formations , 2014, Evol. Intell..

[39]  Serge Kernbach,et al.  Embodied artificial evolution , 2012, Evolutionary Intelligence.

[40]  Phil Husbands,et al.  Evolutionary robotics , 2014, Evolutionary Intelligence.

[41]  Natalia Grafeeva,et al.  Genetic algorithms and genetic programming , 2013 .

[42]  Guido C. H. E. de Croon,et al.  Autonomous flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[43]  Thomas G. Dietterich,et al.  Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms , 2008 .

[44]  Nick Jakobi,et al.  Evolutionary Robotics and the Radical Envelope-of-Noise Hypothesis , 1997, Adapt. Behav..

[45]  C. C. de Visser,et al.  Near-Hover Flapping Wing MAV Aerodynamic Modelling: A linear model approach , 2013 .

[46]  Stefano Nolfi,et al.  Learning and Evolution , 1999, Auton. Robots.

[47]  David E. Goldberg,et al.  Genetic Algorithms, Tournament Selection, and the Effects of Noise , 1995, Complex Syst..

[48]  Andreas Klöckner Interfacing Behavior Trees with the World Using Description Logic , 2013 .

[49]  Antti Valmari,et al.  The State Explosion Problem , 1996, Petri Nets.

[50]  Stefano Nolfi,et al.  Evolving Mobile Robots in Simulated and Real Environments , 1995, Artificial Life.

[51]  A. Eiben,et al.  Embodied artificial evolution Artificial evolutionary systems in the 21 st Century , 2012 .

[52]  Guido C. H. E. de Croon,et al.  Stereo Vision Based Obstacle Avoidance on Flapping Wing MAVs , 2013 .

[53]  Dario Izzo,et al.  Evolutionary robotics approach to odor source localization , 2013, Neurocomputing.

[54]  G. Michael Youngblood,et al.  Representational complexity of reactive agents , 2010, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.

[55]  Stefano Nolfi,et al.  How to Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics , 1994 .

[56]  F. S. Hillier,et al.  Introduction to Operations Research, 10th ed. , 1986 .

[57]  Kevin Knowles,et al.  Aerodynamic modelling of insect-like flapping flight for micro air vehicles , 2006 .

[58]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[59]  Stéphane Doncieux,et al.  The Transferability Approach: Crossing the Reality Gap in Evolutionary Robotics , 2013, IEEE Transactions on Evolutionary Computation.

[60]  James A. Hendler,et al.  HTN Planning: Complexity and Expressivity , 1994, AAAI.

[61]  E.N. Johnson,et al.  Vision-only aircraft flight control , 2003, Digital Avionics Systems Conference, 2003. DASC '03. The 22nd.

[62]  Petter Ögren,et al.  How Behavior Trees modularize robustness and safety in hybrid systems , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[63]  R. Faure,et al.  Introduction to operations research , 1968 .

[64]  Hod Lipson,et al.  Resilient Machines Through Continuous Self-Modeling , 2006, Science.