1.15 – Structural Chemogenomics Databases to Navigate Protein–Ligand Interaction Space

Structural chemogenomics databases allow the integration and exploration of heterogeneous genomic, structural, chemical, and pharmacological data in order to extract useful information that is applicable for the discovery of new protein targets and biologically active molecules. Integrated databases provide proteome-wide, target family-specific, or mechanism-specific information depending on the way that different types of protein–ligand interaction data can be explored. The use of common ontologies allows efficient protein and ligand data curation and mapping that enable the integration of bioactivity data mining, ligand and protein similarity assessment, and structural protein–ligand interaction analyses for the identification of new protein–drug combinations.

[1]  R. Rodenburg,et al.  Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition. , 2015, Cell metabolism.

[2]  Manuela Pavan,et al.  DRAGON SOFTWARE: AN EASY APPROACH TO MOLECULAR DESCRIPTOR CALCULATIONS , 2006 .

[3]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[4]  Katrin Stierand,et al.  Drawing the PDB: Protein-Ligand Complexes in Two Dimensions. , 2010, ACS medicinal chemistry letters.

[5]  F. Sanger,et al.  Nucleotide sequence of bacteriophage φX174 DNA , 1977, Nature.

[6]  Venkatesh,et al.  Bioinformatics, pharma and farmers. , 1999, Trends in biotechnology.

[7]  Robert D. Finn,et al.  New developments in the InterPro database , 2007, Nucleic Acids Res..

[8]  Yang Zhang,et al.  BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions , 2012, Nucleic Acids Res..

[9]  Fei Long,et al.  The PDB_REDO server for macromolecular structure model optimization , 2014, IUCrJ.

[10]  J. Mestres,et al.  Drug‐Target Networks , 2010, Molecular informatics.

[11]  Friedrich Rippmann,et al.  Pocketome of Human Kinases: Prioritizing the ATP Binding Sites of (Yet) Untapped Protein Kinases for Drug Discovery , 2015, J. Chem. Inf. Model..

[12]  Andreas Bender,et al.  Modelling ligand selectivity of serine proteases using integrative proteochemometric approaches improves model performance and allows the multi-target dependent interpretation of features. , 2014, Integrative biology : quantitative biosciences from nano to macro.

[13]  Andreas Bender,et al.  From in silico target prediction to multi-target drug design: current databases, methods and applications. , 2011, Journal of proteomics.

[14]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[15]  E. Kellenberger,et al.  A simple and fuzzy method to align and compare druggable ligand‐binding sites , 2008, Proteins.

[16]  Shaoyong Lu,et al.  ASBench: benchmarking sets for allosteric discovery , 2015, Bioinform..

[17]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[18]  Yu Luo,et al.  Allosite: a method for predicting allosteric sites , 2013, Bioinform..

[19]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[20]  Bas Vroling,et al.  GPCRdb: an information system for G protein-coupled receptors , 2015, Nucleic Acids Res..

[21]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[22]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[23]  T. Klabunde Chemogenomic approaches to drug discovery: similar receptors bind similar ligands , 2007, British journal of pharmacology.

[24]  B. Roth,et al.  The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches? , 2000 .

[25]  Stefan Verhoeven,et al.  3D-e-Chem GPCRdb KNIME nodes: v1.0.6 , 2016 .

[26]  R. Solé,et al.  Data completeness—the Achilles heel of drug-target networks , 2008, Nature Biotechnology.

[27]  N. O. Manning,et al.  The protein data bank , 1999, Genetica.

[28]  Gerard J. P. van Westen,et al.  Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets , 2011 .

[29]  Didier Rognan,et al.  sc-PDB: a 3D-database of ligandable binding sites—10 years on , 2014, Nucleic Acids Res..

[30]  Peter Ertl,et al.  Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization , 2010, Molecular informatics.

[31]  Mark A. Murcko,et al.  Virtual screening : an overview , 1998 .

[32]  Kenji Mizuguchi,et al.  PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs , 2014, Nucleic Acids Res..

[33]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[34]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[35]  Gerard J. Kleywegt,et al.  Crystallographic refinement of ligand complexes , 2006, Acta crystallographica. Section D, Biological crystallography.

[36]  E. Knapp,et al.  Database of protein complexes with multivalent binding ability: Bival‐bind , 2014, Proteins.

[37]  I. D. de Esch,et al.  KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. , 2014, Journal of medicinal chemistry.

[38]  D. Schrag,et al.  Oxygen Isotope Constraints on the Sulfur Cycle over the Past 10 Million Years , 2004, Science.

[39]  J. Baell,et al.  Chemistry: Chemical con artists foil drug discovery , 2014, Nature.

[40]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[41]  P. Radivojac,et al.  Analysis of protein function and its prediction from amino acid sequence , 2011, Proteins.

[42]  C. Begley,et al.  Drug development: Raise standards for preclinical cancer research , 2012, Nature.

[43]  S. Lampel,et al.  The druggable genome: an update. , 2005, Drug discovery today.

[44]  Robert D. Finn,et al.  iPfam: a database of protein family and domain interactions found in the Protein Data Bank , 2013, Nucleic Acids Res..

[45]  Hans-Werner Mewes,et al.  The PIR-International Protein Sequence Database , 1992, Nucleic Acids Res..

[46]  C. Ehrt,et al.  Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design. , 2016, Journal of medicinal chemistry.

[47]  J. Drews Stategic trends in the drug industry. , 2003, Drug discovery today.

[48]  Douglas E. V. Pires,et al.  Platinum: a database of experimentally measured effects of mutations on structurally defined protein–ligand complexes , 2014, Nucleic Acids Res..

[49]  Ying Xu,et al.  Protein domain decomposition using a graph-theoretic approach , 2000, Bioinform..

[50]  Joanna L. Sharman,et al.  The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands , 2015, Nucleic Acids Res..

[51]  H. Kubinyi Drug research: myths, hype and reality , 2003, Nature Reviews Drug Discovery.

[52]  Steven E. Brenner,et al.  SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures , 2013, Nucleic Acids Res..

[53]  J. Dearden,et al.  QSAR modeling: where have you been? Where are you going to? , 2014, Journal of medicinal chemistry.

[54]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[55]  Philippe Roche,et al.  2P2IHUNTER: a tool for filtering orthosteric protein–protein interaction modulators via a dedicated support vector machine , 2014, Journal of The Royal Society Interface.

[56]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[57]  Chris de Graaf,et al.  Discovery of novel Trypanosoma brucei phosphodiesterase B1 inhibitors by virtual screening against the unliganded TbrPDEB1 crystal structure. , 2013, Journal of medicinal chemistry.

[58]  J. Bonfield,et al.  Finishing the euchromatic sequence of the human genome , 2004, Nature.

[59]  Jürgen Bajorath,et al.  A Perspective on Computational Chemogenomics , 2013, Molecular informatics.

[60]  Alexander Tropsha,et al.  Curation of chemogenomics data. , 2015, Nature chemical biology.

[61]  J. D. Elliott,et al.  Drug discovery in the next millennium. , 2000, Annual review of pharmacology and toxicology.

[62]  Qi Wang,et al.  Toward understanding the molecular basis for chemical allosteric modulator design. , 2012, Journal of Molecular Graphics and Modelling.

[63]  Olivier Sperandio,et al.  One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. , 2013, Drug discovery today.

[64]  Antony J. Williams,et al.  Bigger data, collaborative tools and the future of predictive drug discovery , 2014, Journal of Computer-Aided Molecular Design.

[65]  Haruki Nakamura,et al.  The Protein Data Bank archive as an open data resource , 2014, Journal of Computer-Aided Molecular Design.

[66]  Didier Rognan,et al.  Binding of Protein Kinase Inhibitors to Synapsin I Inferred from Pair-Wise Binding Site Similarity Measurements , 2010, PloS one.

[67]  Mindy I. Davis,et al.  A quantitative analysis of kinase inhibitor selectivity , 2008, Nature Biotechnology.

[68]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[69]  E. Jacoby,et al.  Chemogenomics: an emerging strategy for rapid target and drug discovery , 2004, Nature Reviews Genetics.

[70]  Maria Jesus Martin,et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 , 2003, Nucleic Acids Res..

[71]  Tudor I. Oprea,et al.  Systems chemical biology. , 2007 .

[72]  Sébastien Moretti,et al.  Bgee: Integrating and Comparing Heterogeneous Transcriptome Data Among Species , 2008, DILS.

[73]  George Papadatos,et al.  MyChEMBL: A Virtual Platform for Distributing Cheminformatics Tools and Open Data , 2014, Challenges.

[74]  Joanna Owens,et al.  Target validation: Determining druggability , 2007, Nature Reviews Drug Discovery.

[75]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[76]  Christian Kramer,et al.  Quality Issues with Public Domain Chemogenomics Data , 2013, Molecular informatics.

[77]  Bryan L. Roth,et al.  Chemical Informatics and Target Identification in a Zebrafish Phenotypic Screen , 2011, Nature chemical biology.

[78]  T. Geppert,et al.  Biological Networks and Drug Discovery—Where Do We Stand? , 2014, Drug development research.

[79]  J. Scannell,et al.  Diagnosing the decline in pharmaceutical R&D efficiency , 2012, Nature Reviews Drug Discovery.

[80]  Ion I. Mandoiu,et al.  In Silico Enzymatic Synthesis of a 400 000 Compound Biochemical Database for Nontargeted Metabolomics , 2013, J. Chem. Inf. Model..

[81]  Gary D. Bader,et al.  Pathguide: a Pathway Resource List , 2005, Nucleic Acids Res..

[82]  J. Bajorath,et al.  How Promiscuous Are Pharmaceutically Relevant Compounds? A Data-Driven Assessment , 2012, The AAPS Journal.

[83]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[84]  P Kolb,et al.  GPCRdb: the G protein‐coupled receptor database – an introduction , 2016, British journal of pharmacology.

[85]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[86]  Didier Rognan,et al.  Computational Profiling of Bioactive Compounds Using a Target-Dependent Composite Workflow , 2013, J. Chem. Inf. Model..

[87]  J. Bajorath Computational analysis of ligand relationships within target families. , 2008, Current opinion in chemical biology.

[88]  Haruki Nakamura,et al.  The Protein Data Bank at 40: reflecting on the past to prepare for the future. , 2012, Structure.

[89]  F. Prinz,et al.  Believe it or not: how much can we rely on published data on potential drug targets? , 2011, Nature Reviews Drug Discovery.

[90]  Akira R. Kinjo,et al.  Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format , 2011, Nucleic Acids Res..

[91]  Tom L. Blundell,et al.  CREDO: a structural interactomics database for drug discovery , 2013, Database J. Biol. Databases Curation.

[92]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[93]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[94]  Didier Rognan,et al.  Proteome-scale docking: myth and reality. , 2013, Drug discovery today. Technologies.

[95]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[96]  Aurélien Grosdidier,et al.  SwissTargetPrediction: a web server for target prediction of bioactive small molecules , 2014, Nucleic Acids Res..

[97]  P. Clemons,et al.  Target identification and mechanism of action in chemical biology and drug discovery. , 2013, Nature chemical biology.

[98]  Jürgen Bajorath,et al.  Recent progress in understanding activity cliffs and their utility in medicinal chemistry. , 2014, Journal of medicinal chemistry.

[99]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its new supplement TREMBL , 1996, Nucleic Acids Res..

[100]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[101]  Andrew R Thomson,et al.  De novo protein design: how do we expand into the universe of possible protein structures? , 2015, Current opinion in structural biology.

[102]  Damian Szklarczyk,et al.  STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data , 2015, Nucleic Acids Res..

[103]  J. Sussman,et al.  JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia , 2013 .

[104]  M. Rask-Andersen,et al.  Trends in the exploitation of novel drug targets , 2011, Nature Reviews Drug Discovery.

[105]  Nuno A. Fonseca,et al.  Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants , 2015, Nucleic Acids Res..

[106]  Ruedi Stoop,et al.  An Ontology for Pharmaceutical Ligands and Its Application for in Silico Screening and Library Design , 2002, J. Chem. Inf. Comput. Sci..

[107]  Saskia Nijmeijer,et al.  Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies. , 2011, Journal of medicinal chemistry.

[108]  Jessica Morrison,et al.  POLICY Ethanol and petroleum industries pan new Renewable Fuel Standard , 2016 .

[109]  G. Schuler Pieces of the puzzle: expressed sequence tags and the catalog of human genes , 1997, Journal of Molecular Medicine.

[110]  Yanli Wang,et al.  PubChem BioAssay: 2014 update , 2013, Nucleic Acids Res..

[111]  J. Smeitink,et al.  Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity , 2015, Scientific Reports.

[112]  Scott Federhen,et al.  The NCBI Taxonomy database , 2011, Nucleic Acids Res..

[113]  Philippe Roche,et al.  2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein–protein interactions , 2016, Database J. Biol. Databases Curation.

[114]  Richard D. Smith,et al.  Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures , 2014, Nucleic Acids Res..

[115]  David S. Goodsell,et al.  The RCSB Protein Data Bank: views of structural biology for basic and applied research and education , 2014, Nucleic Acids Res..

[116]  Anna Vulpetti,et al.  Chemogenomics in drug discovery: computational methods based on the comparison of binding sites. , 2012, Future medicinal chemistry.

[117]  Jaap Heringa,et al.  Electron Density Fingerprints (EDprints): Virtual Screening Using Assembled Information of Electron Density , 2010, J. Chem. Inf. Model..

[118]  John D. Westbrook,et al.  The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods , 2011, Journal of Structural and Functional Genomics.

[119]  M. M. Sanders,et al.  From the protein's perspective: the benefits and challenges of protein structure-based pharmacophore modeling , 2012 .

[120]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[121]  Gilles Marcou,et al.  Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints , 2007, J. Chem. Inf. Model..

[122]  J. Bajorath,et al.  What is the Likelihood of an Active Compound to Be Promiscuous? Systematic Assessment of Compound Promiscuity on the Basis of PubChem Confirmatory Bioassay Data , 2013, The AAPS Journal.

[123]  Adam Godzik,et al.  Flexible structure alignment by chaining aligned fragment pairs allowing twists , 2003, ECCB.

[124]  Dusanka Janezic,et al.  ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites , 2015, J. Chem. Inf. Model..

[125]  H. Berman The Protein Data Bank: a historical perspective. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[126]  Shuai Li,et al.  ASD v2.0: updated content and novel features focusing on allosteric regulation , 2013, Nucleic Acids Res..

[127]  Chris de Graaf,et al.  Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study , 2015, J. Chem. Inf. Model..

[128]  M. Murcko,et al.  Chemogenomic approaches to drug discovery. , 2001, Current opinion in chemical biology.

[129]  Barend Mons,et al.  Open PHACTS: semantic interoperability for drug discovery. , 2012, Drug discovery today.

[130]  Ilya N. Shindyalov,et al.  PDP: protein domain parser , 2003, Bioinform..

[131]  Ben M. Webb,et al.  ModBase, a database of annotated comparative protein structure models and associated resources , 2013, Nucleic Acids Res..

[132]  Lisa Jarvis,et al.  The year in new drugs , 2018 .

[133]  Michael J. Keiser,et al.  Large Scale Prediction and Testing of Drug Activity on Side-Effect Targets , 2012, Nature.

[134]  Takeshi Kawabata,et al.  Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites , 2007, Proteins.

[135]  J. Peters Polypharmacology - foe or friend? , 2013, Journal of medicinal chemistry.

[136]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[137]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[138]  Mathias Wawer,et al.  Similarity-Potency Trees: A Method to Search for SAR Information in Compound Data Sets and Derive SAR Rules , 2010, J. Chem. Inf. Model..

[139]  Tudor I. Oprea,et al.  WOMBAT: World of Molecular Bioactivity , 2005 .

[140]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[141]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[142]  Adel Golovin,et al.  MSDsite: A database search and retrieval system for the analysis and viewing of bound ligands and active sites , 2004, Proteins.

[143]  Sartaj Sahni,et al.  Multicore and GPU algorithms for Nussinov RNA folding , 2014, BMC Bioinformatics.

[144]  Tina Ritschel,et al.  Pharmacophore Fingerprint-Based Approach to Binding Site Subpocket Similarity and Its Application to Bioisostere Replacement , 2012, J. Chem. Inf. Model..

[145]  Nagasuma R. Chandra,et al.  PLIC: protein–ligand interaction clusters , 2014, Database J. Biol. Databases Curation.

[146]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[147]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[148]  Shuai Li,et al.  Alloscore: a method for predicting allosteric ligand-protein interactions , 2016, Bioinform..

[149]  Michael K. Gilson,et al.  BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology , 2015, Nucleic Acids Res..

[150]  Eric T. Kim,et al.  How does a drug molecule find its target binding site? , 2011, Journal of the American Chemical Society.

[151]  Jaewoo Kang,et al.  K-Map: connecting kinases with therapeutics for drug repurposing and development , 2013, Human Genomics.

[152]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[153]  Chris de Graaf,et al.  KLIFS: a structural kinase-ligand interaction database , 2015, Nucleic Acids Res..

[154]  Didier Rognan,et al.  sc-PDB-Frag: A Database of Protein-Ligand Interaction Patterns for Bioisosteric Replacements , 2014, J. Chem. Inf. Model..

[155]  Ross McGuire,et al.  Data-driven medicinal chemistry in the era of big data. , 2014, Drug discovery today.

[156]  Michael J. Keiser,et al.  Predicting new molecular targets for known drugs , 2009, Nature.

[157]  Abhik Mukhopadhyay,et al.  PDBe: improved accessibility of macromolecular structure data from PDB and EMDB , 2015, Nucleic Acids Res..

[158]  Tom L. Blundell,et al.  TIMBAL v2: update of a database holding small molecules modulating protein–protein interactions , 2013, Database J. Biol. Databases Curation.

[159]  Gisbert Schneider,et al.  De novo design - hop(p)ing against hope. , 2013, Drug discovery today. Technologies.

[160]  G. V. Paolini,et al.  Global mapping of pharmacological space , 2006, Nature Biotechnology.

[161]  Juergen Haas,et al.  The Protein Model Portal—a comprehensive resource for protein structure and model information , 2013, Database J. Biol. Databases Curation.

[162]  Kwong-Sak Leung,et al.  iview: an interactive WebGL visualizer for protein-ligand complex , 2014, BMC Bioinformatics.

[163]  Andreas Prlic,et al.  Pre-calculated protein structure alignments at the RCSB PDB website , 2010, Bioinform..

[164]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[165]  R. Leurs,et al.  A structural chemogenomics analysis of aminergic GPCRs: lessons for histamine receptor ligand design , 2013, British journal of pharmacology.

[166]  Didier Rognan,et al.  Encoding Protein-Ligand Interaction Patterns in Fingerprints and Graphs , 2013, J. Chem. Inf. Model..

[167]  Philip E. Bourne,et al.  SuperTarget goes quantitative: update on drug–target interactions , 2011, Nucleic Acids Res..

[168]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[169]  David A. Lee,et al.  CATH: comprehensive structural and functional annotations for genome sequences , 2014, Nucleic Acids Res..

[170]  Maria Jesus Martin,et al.  SIFTS: Structure Integration with Function, Taxonomy and Sequences resource , 2012, Nucleic Acids Res..

[171]  Isidro Cortes-Ciriano,et al.  Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects , 2015 .

[172]  Radka Svobodová Vareková,et al.  ValidatorDB: database of up-to-date validation results for ligands and non-standard residues from the Protein Data Bank , 2014, Nucleic Acids Res..

[173]  K. Shokat,et al.  Targeting the cancer kinome through polypharmacology , 2010, Nature Reviews Cancer.

[174]  Satoshi Niijima,et al.  GLIDA: GPCR—ligand database for chemical genomics drug discovery—database and tools update , 2007, Nucleic Acids Res..

[175]  Georgi K. Kanev,et al.  PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. , 2016, Journal of medicinal chemistry.

[176]  Jie Li,et al.  PDB-wide collection of binding data: current status of the PDBbind database , 2015, Bioinform..

[177]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[178]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[179]  Yang Zhang,et al.  GLASS: a comprehensive database for experimentally validated GPCR-ligand associations , 2015, Bioinform..

[180]  Themis Lazaridis,et al.  Water at biomolecular binding interfaces. , 2007, Physical chemistry chemical physics : PCCP.

[181]  Kai-Cheng Hsu,et al.  KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms , 2012, Nucleic Acids Res..

[182]  J. Bajorath,et al.  Polypharmacology: challenges and opportunities in drug discovery. , 2014, Journal of medicinal chemistry.

[183]  R. Stevens,et al.  Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. , 2011, Journal of medicinal chemistry.

[184]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[185]  Benjamin A. Shoemaker,et al.  IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins , 2011, Nucleic Acids Res..

[186]  J. Mestres,et al.  On the origins of drug polypharmacology , 2013 .