Nonprehensile Manipulation of Deformable Objects: Achievements and Perspectives from the Robotic Dynamic Manipulation Project

The goal of this article is to disseminate the planning and control strategies for robotic nonprehensile manipulation results achieved so far with the Robotic Dynamic Manipulation (RoDyMan) project. The goal of the project is to advance the state of the art of nonprehensile dynamic manipulation of rigid and deformable objects to enhance the possibility of employing robots in anthropic environments. RoDyMan project's final demonstration will be acting as an autonomous pizza maker. This article highlights the lessons learned and paves the way toward critical discussions and future research.

[1]  Paul Umbanhowar,et al.  Friction-Induced Velocity Fields for Point Parts Sliding on a Rigid Oscillated Plate , 2009, Int. J. Robotics Res..

[2]  Bruno Siciliano,et al.  Synergy-based policy improvement with path integrals for anthropomorphic hands , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[4]  Rui Pedro Duarte Cortesão,et al.  Physical feasibility of robot base inertial parameter identification: A linear matrix inequality approach , 2014, Int. J. Robotics Res..

[5]  Dirk Wollherr,et al.  Ball dribbling with an underactuated continuous-time control phase: Theory & experiments , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Makoto Kaneko,et al.  Dynamic Manipulation Inspired by the Handling of a Pizza Peel , 2009, IEEE Transactions on Robotics.

[7]  Vincenzo Lippiello,et al.  Tracking elastic deformable objects with an RGB-D sensor for a pizza chef robot , 2017, Robotics Auton. Syst..

[8]  Haiyan Wu,et al.  Dynamic manipulation: Nonprehensile ball catching , 2010, 18th Mediterranean Conference on Control and Automation, MED'10.

[9]  Alessandro De Luca,et al.  Collision Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Kevin M. Lynch,et al.  Planning and control for dynamic, nonprehensile, and hybrid manipulation tasks , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Vincenzo Lippiello,et al.  A coordinate-free framework for robotic pizza tossing and catching , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[12]  Vincenzo Lippiello,et al.  An Optimal Trajectory Planner for a Robotic Batting Task: The Table Tennis Example , 2016, ICINCO.

[13]  Vincenzo Lippiello,et al.  Passivity-Based Control for a Rolling-Balancing System: The Nonprehensile Disk-on-Disk , 2017, IEEE Transactions on Control Systems Technology.

[14]  Kevin M. Lynch,et al.  Stable Pushing: Mechanics, Controllability, and Planning , 1995, Int. J. Robotics Res..

[15]  Bruno Siciliano,et al.  Postural synergies of the UB Hand IV for human-like grasping , 2014, Robotics Auton. Syst..

[16]  Sachin Chitta,et al.  MoveIt! [ROS Topics] , 2012, IEEE Robotics Autom. Mag..

[17]  Kevin M. Lynch,et al.  Control of Nonprehensile Manipulation , 2003, Control Problems in Robotics.

[18]  Raffaello D'Andrea,et al.  Design and Analysis of a Blind Juggling Robot , 2012, IEEE Transactions on Robotics.

[19]  Vincenzo Lippiello,et al.  Aerial service vehicles for industrial inspection: task decomposition and plan execution , 2013, Applied Intelligence.

[20]  Vincenzo Lippiello,et al.  The Effect of Shapes in Input-State Linearization for Stabilization of Nonprehensile Planar Rolling Dynamic Manipulation , 2016, IEEE Robotics and Automation Letters.