A Priori Error Bound for Moment Matching Approximants of Thermal Models

This article focuses on the moment matching methodology for deriving dynamic compact thermal models (DCTMs) of electronic components. For the first time, an a priori error bound is theoretically established both in the time and frequency domains, which is suited to accurately estimate the approximation error introduced by DCTMs in practical electronics applications. By exploiting this result, it is also shown that the near-optimal choice of matching points previously proposed by one of the authors minimizes the error bound here derived, among all the possible choices of matching points. The introduced error bound is verified by applying the moment matching algorithm to a state-of-the-art packaged InGaP/GaAs heterojunction bipolar transistor (HBT) used in output stages of power amplifiers for handset applications.

[1]  R. Karl Rethemeyer,et al.  Network analysis , 2011 .

[2]  E. Wachspress Extended Application of Alternating Direction Implicit Iteration Model Problem Theory , 1963 .

[3]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[4]  Paolo Maffezzoni,et al.  Parameters for multi-point moment matching reduction of thermal networks , 2002 .

[5]  Marta Rencz,et al.  Dynamic thermal multiport modeling of IC packages , 2001 .

[6]  Brett Ninness,et al.  Orthonormal basis functions for modelling continuous-time systems , 1999, Signal Process..

[7]  Ernest S. Kuh,et al.  Passive multipoint moment matching model order reduction algorithm on multiport distributed interconnect networks , 1999 .

[8]  M.-N. Sabry High-precision compact-thermal models , 2005, IEEE Transactions on Components and Packaging Technologies.

[9]  Alessandro Magnani,et al.  Simulation comparison of InGaP/GaAs HBT thermal performance in wire-bonding and flip-chip technologies , 2017, Microelectron. Reliab..

[10]  Kevin Skadron,et al.  HotSpot: a compact thermal modeling methodology for early-stage VLSI design , 2006, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[11]  Paolo Maffezzoni,et al.  An Arnoldi based thermal network reduction method for electro-thermal analysis , 2003 .

[12]  Paolo Maffezzoni,et al.  Compact modeling of electrical devices for electrothermal analysis , 2003 .

[13]  M.-N. Sabry,et al.  Dynamic Compact Thermal Models Used for Electronic Design: A Review of Recent Progress , 2003 .

[14]  S. Martellucci,et al.  Photoacoustic optical and thermal characterization of Si and GaAs ion implanted layers , 1987 .

[15]  Jing-Rebecca Li Model reduction of large linear systems via low rank system gramians , 2000 .

[16]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[17]  V. d'Alessandro,et al.  Influence of layout and technology parameters on the thermal behavior of InGaP/GaAs HBTs , 2017, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[20]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[21]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[22]  V. d'Alessandro,et al.  Analysis of the Influence of Layout and Technology Parameters on the Thermal Impedance of GaAs HBT/BiFET Using a Highly-Efficient Tool , 2014, 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[23]  Damir Čemerin,et al.  IV , 2011 .

[24]  V. d'Alessandro,et al.  Numerical analysis of the thermal behavior sensitivity to technology parameters and operating conditions in InGaP/GaAs HBTs , 2017, 2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[25]  W. Kautz Transient synthesis in the time domain , 1954 .

[26]  M. Dessouky,et al.  A framework theory for Dynamic Compact Thermal Models , 2012, 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).

[27]  A. Antoulas,et al.  H 2 Model Reduction for Large-scale Linear Dynamical Systems * , 2022 .

[28]  A. Morelli,et al.  Thermal transient modeling and experimental validation in the European project PROFIT , 2003, Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003..