Model order reduction by parameter-varying oblique projection

A method to reduce the dynamic order of linear parameter-varying (LPV) systems in grid representation is developed in this paper. It approximates balancing and truncation by an oblique projection onto a dominant subspace. The approach is novel in its use of a parameter-varying kernel to define the direction of this projection. Parameter-varying state transformations in general lead to parameter rate dependence in the model. The proposed projection avoids this dependence and maintains a consistent state space basis for the reduced-order system. The method is compared with LPV balancing and truncation for a nonlinear mass-spring-damper system. It is shown to yield similar accuracy, while the required computation time is reduced by a factor of almost 100,000.

[1]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[2]  Jens Nørkær Sørensen,et al.  A MODEL FOR UNSTEADY ROTOR AERODYNAMICS , 1995 .

[3]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[4]  Peter J Seiler,et al.  Model order reduction by parameter-varying oblique projection , 2016, ACC.

[5]  Jennifer Annoni Modeling for Wind Farm Control , 2016 .

[6]  J. Sørensen,et al.  Unsteady actuator disc model for horizontal axis wind turbines , 1992 .

[7]  Andras Varga,et al.  Balancing free square-root algorithm for computing singular perturbation approximations , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  John J. Burken,et al.  Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft , 2014 .

[10]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[11]  D. Enns Model reduction with balanced realizations: An error bound and a frequency weighted generalization , 1984, The 23rd IEEE Conference on Decision and Control.

[12]  Serkan Gugercin,et al.  An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems , 2008 .

[13]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[14]  Giles David Wood,et al.  Control of parameter-dependent mechanical systems , 1995 .

[15]  Robert Skelton,et al.  Model reductions using a projection formulation , 1987, 26th IEEE Conference on Decision and Control.

[16]  A. Packard,et al.  Control of Parametrically-Dependent Linear Systems: A Single Quadratic Lyapunov Approach , 1993, 1993 American Control Conference.

[17]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[18]  Jakob Stoustrup,et al.  Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[19]  K. Glover,et al.  Approximation of linear parameter-varying systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[20]  Charles A. Desoer,et al.  Slowly varying system ẋ = A(t)x , 1969 .

[21]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[22]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[23]  Jacob K. White,et al.  Low Rank Solution of Lyapunov Equations , 2002, SIAM J. Matrix Anal. Appl..

[24]  Lawton H. Lee,et al.  Control of linear parameter-varying systems using dynamic parameter measurement , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[25]  P. Seiler,et al.  A method to construct reduced‐order parameter‐varying models , 2017 .

[26]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[27]  Boris Lohmann,et al.  Parametric Model Order Reduction by Matrix Interpolation , 2010, Autom..

[28]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[29]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[30]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[31]  Charles Poussot-Vassal,et al.  Generation of a reduced-order LPV/LFT model from a set of large-scale MIMO LTI flexible aircraft models , 2012 .

[32]  Peter Benner,et al.  Numerical solution of large‐scale Lyapunov equations, Riccati equations, and linear‐quadratic optimal control problems , 2008, Numer. Linear Algebra Appl..

[33]  Yi Wang,et al.  Model Order Reduction of Aeroservoelastic Model of Flexible Aircraft , 2016 .

[34]  Karen Willcox,et al.  A Survey of Model Reduction Methods for Parametric Systems ∗ , 2013 .

[35]  Gary J. Balas,et al.  Linear, parameter‐varying control and its application to a turbofan engine , 2002 .

[36]  Peter Seiler,et al.  Gain scheduling for nonlinear systems via integral quadratic constraints , 2015, 2015 American Control Conference (ACC).

[37]  Charbel Farhat,et al.  An Online Method for Interpolating Linear Parametric Reduced-Order Models , 2011, SIAM J. Sci. Comput..

[38]  Peter J Seiler,et al.  Wind farm modeling and control using dynamic mode decomposition , 2016 .

[39]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[40]  Peter J Seiler,et al.  LPVTools: A Toolbox for Modeling, Analysis, and Synthesis of Parameter Varying Control Systems ? , 2015 .

[41]  Herbert Werner,et al.  Modal Matching for LPV Model Reduction of Aeroservoelastic Vehicles , 2015 .

[42]  Brian P. Danowsky,et al.  High Fidelity Aeroservoelastic Model Reduction Methods , 2016 .