Gaussian Process Motion planning

Motion planning is a fundamental tool in robotics, used to generate collision-free, smooth, trajectories, while satisfying task-dependent constraints. In this paper, we present a novel approach to motion planning using Gaussian processes. In contrast to most existing trajectory optimization algorithms, which rely on a discrete state parameterization in practice, we represent the continuous-time trajectory as a sample from a Gaussian process (GP) generated by a linear time-varying stochastic differential equation. We then provide a gradient-based optimization technique that optimizes continuous-time trajectories with respect to a cost functional. By exploiting GP interpolation, we develop the Gaussian Process Motion Planner (GPMP), that finds optimal trajectories parameterized by a small number of states. We benchmark our algorithm against recent trajectory optimization algorithms by solving 7-DOF robotic arm planning problems in simulation and validate our approach on a real 7-DOF WAM arm.

[1]  Simo Särkkä,et al.  Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression , 2014, Robotics: Science and Systems.

[2]  Bernhard Schölkopf,et al.  Learning Inverse Dynamics: a Comparison , 2008, ESANN.

[3]  Keliang He,et al.  Multigrid CHOMP with Local Smoothing , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[4]  Dieter Fox,et al.  GP-UKF: Unscented kalman filters with Gaussian process prediction and observation models , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[6]  Paul Timothy Furgale,et al.  Gaussian Process Gauss-Newton: Non-Parametric State Estimation , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[7]  Byron Boots,et al.  Incremental sparse GP regression for continuous-time trajectory estimation and mapping , 2017, Robotics Auton. Syst..

[8]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[9]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[10]  Christian Laugier,et al.  Modelling Smooth Paths Using Gaussian Processes , 2007, FSR.

[11]  Siddhartha S. Srinivasa,et al.  Manipulation planning with goal sets using constrained trajectory optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  Pieter Abbeel,et al.  Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization , 2013, Robotics: Science and Systems.

[13]  Carl E. Rasmussen,et al.  PILCO: A Model-Based and Data-Efficient Approach to Policy Search , 2011, ICML.

[14]  S. Srinivasa,et al.  Push-grasping with dexterous hands: Mechanics and a method , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Narendra Ahuja,et al.  An analytically tractable potential field model of free space and its application in obstacle avoidance , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[16]  James J. Kuffner,et al.  OpenRAVE: A Planning Architecture for Autonomous Robotics , 2008 .

[17]  Siddhartha S. Srinivasa,et al.  Space-time functional gradient optimization for motion planning , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Yuval Tassa,et al.  Stochastic Differential Dynamic Programming , 2010, Proceedings of the 2010 American Control Conference.

[19]  Siddhartha S. Srinivasa,et al.  Planning pre-grasp manipulation for transport tasks , 2010, 2010 IEEE International Conference on Robotics and Automation.

[20]  Stefan Schaal,et al.  STOMP: Stochastic trajectory optimization for motion planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Matthew R. Walter,et al.  Exactly Sparse Extended Information Filters for Feature-based SLAM , 2007, Int. J. Robotics Res..

[22]  Wolfram Burgard,et al.  Most likely heteroscedastic Gaussian process regression , 2007, ICML '07.

[23]  Wolfram Burgard,et al.  Body schema learning for robotic manipulators from visual self-perception , 2009, Journal of Physiology - Paris.

[24]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[25]  Sean Quinlan Real-time modification of collision-free paths , 1994 .

[26]  MH Mabrouk,et al.  Solving the potential field local minimum problem using internal agent states , 2008, Robotics Auton. Syst..

[27]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[28]  Siddhartha S. Srinivasa,et al.  CHOMP: Gradient optimization techniques for efficient motion planning , 2009, 2009 IEEE International Conference on Robotics and Automation.

[29]  Dieter Fox,et al.  GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models , 2008, IROS.

[30]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..