Worst-case asymptotic properties of /spl Hscr//sub /spl infin// identification

This paper studies asymptotic properties of /spl Hscr//sub /spl infin// identification problems and algorithms. The sample complexity of time- and frequency-domain /spl Hscr//sub /spl infin// identification problems is estimated, which exhibits a polynomial growth requirement on the input observation duration for the time-domain /spl Hscr//sub /spl infin// identification problem, and a linear growth rate of frequency response samples required for the frequency-domain /spl Hscr//sub /spl infin// identification problem. The divergence behavior is also established for linear algorithms for the time- and frequency-domain problems. The results extend previous work to more restricted sets of linear time-invariant systems with more refined a priori information, specifically imposed on the stability degree and the steady-state gain of the systems, thus demonstrating that no robustly convergent linear algorithms can exist even for a small set of exponentially stable systems.

[1]  J. Partington Robust identification and interpolation in H , 1991 .

[2]  Guoxiang Gu,et al.  Identification in H8 using Pick's interpolation , 1993 .

[3]  P. Mäkilä Robust identification and Galois sequences , 1991 .

[4]  Jonathan R. Partington Worst-case errors of linear algorithms for identification in H , 1998 .

[5]  P. Mäkilä,et al.  Worst-case analysis of the least-squares method and related identification methods , 1995 .

[6]  P. Khargonekar,et al.  Linear and nonlinear algorithms for identification in H/sub infinity / with error bounds , 1992 .

[7]  Kemin Zhou,et al.  H∞ identification of multivariable systems by tangential interpolation methods , 1996, IEEE Trans. Autom. Control..

[8]  P.M. Mäkilä,et al.  Worst-case control-relevant identification , 1995, Autom..

[9]  Pablo A. Parrilo,et al.  A parametric extension of mixed time/frequency robust identification , 1999, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[10]  Pablo A. Parrilo,et al.  Mixed time/frequency-domain based robust identification , 1998, Proceedings of 35th IEEE Conference on Decision and Control.

[11]  Arthur J. Helmicki,et al.  Least squares methods for H∞ control-oriented system identification , 1993, IEEE Trans. Autom. Control..

[12]  P. Khargonekar,et al.  Linear and nonlinear algorithms for identification in H∞ with error bounds , 1991, 1991 American Control Conference.

[13]  Brett Ninness Aspects of linear estimation in H , 1999 .

[14]  J. Partington Robust identification in H , 1992 .

[15]  Carl N. Nett,et al.  Control oriented system identification: a worst-case/deterministic approach in H/sub infinity / , 1991 .

[16]  J. A. Ward,et al.  Sample complexity of worst-case H ∞ -identification , 1996 .

[17]  Brett Ninness,et al.  On the worst-case divergence of the least-squares algorithm , 1998 .

[18]  Jie Chen,et al.  Worst case system identification in H∞: validation of a priori information, essentially optimal algorithms, and error bounds , 1995, IEEE Trans. Autom. Control..

[19]  Hüseyin Akçay,et al.  The least-squares identification of FIR systems subject to worst-case noise , 1994 .

[20]  Jie Chen,et al.  The Caratheodory-Fejer problem and H∞/l1 identification: a time domain approach , 1995, IEEE Trans. Autom. Control..

[21]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[22]  M. Milanese,et al.  Optimality properties in finite sample li identification with bounded noise , 1995 .

[23]  J. Tsitsiklis,et al.  The sample complexity of worst-case identification of FIR linear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[24]  Graham C. Goodwin,et al.  Estimation of model quality , 1994, Autom..

[25]  K. Poolla,et al.  On the time complexity of worst-case system identification , 1994, IEEE Trans. Autom. Control..