Sampling-free model reduction of systems with low-rank parameterization

We consider the reduction of parametric families of linear dynamical systems having an affine parameter dependence that allow for low-rank variation in the state matrix. Usual approaches for parametric model reduction typically involve exploring the parameter space to identify representative parameter values and the associated models become the principal focus of model reduction methodology. These models are then combined in various ways in order to interpolate the response. The initial exploration of the parameter space can be a forbiddingly expensive task. A different approach is proposed here that requires neither parameter sampling nor parameter space exploration. Instead, we represent the system response function as a composition of four subsystem response functions that are non-parametric with a purely parameter-dependent function. One may apply any one of a number of standard (non-parametric) model reduction strategies to reduce the subsystems independently, and then conjoin these reduced models with the underlying parameterization to obtain the overall parameterized response. Our approach has elements in common with the parameter mapping approach of Baur et al. (PAMM 14(1), 19–22 2014) but offers greater flexibility and potentially greater control over accuracy. In particular, a data-driven variation of our approach is described that exercises this flexibility through the use of limited frequency-sampling of the underlying non-parametric models. The parametric structure of our system representation allows for a priori guarantees of system stability in the resulting reduced models across the full range of parameter values. Incorporation of system theoretic error bounds allows us to determine appropriate approximation orders for the non-parametric systems sufficient to yield uniformly high accuracy across the parameter range. We illustrate our approach on a class of structural damping optimization problems and on a benchmark model of thermal conduction in a semiconductor chip. The parametric structure of our reduced system representation lends itself very well to the development of optimization strategies making use of efficient cost function surrogates. We discuss this in some detail for damping parameter and location optimization for vibrating structures.

[1]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[2]  Alexander Rudolf Grimm,et al.  Parametric Dynamical Systems: Transient Analysis and Data Driven Modeling , 2018 .

[3]  B. Gustavsen,et al.  Improving the pole relocating properties of vector fitting , 2006, 2006 IEEE Power Engineering Society General Meeting.

[4]  Peter Benner,et al.  Semi‐active damping optimization of vibrational systems using the parametric dominant pole algorithm , 2016 .

[5]  K. Veselic,et al.  Damped Oscillations of Linear Systems: A Mathematical Introduction , 2011 .

[6]  Lihong Feng,et al.  Parameter independent model order reduction , 2005, Math. Comput. Simul..

[7]  Franco Blanchini,et al.  Constant and switching gains in semi-active damping of vibrating structures , 2012, Int. J. Control.

[8]  R. Ober Balanced parametrization of classes of linear systems , 1991 .

[9]  Serkan Gugercin,et al.  A trust region method for optimal H2 model reduction , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[10]  Jeffrey M. Hokanson,et al.  Projected Nonlinear Least Squares for Exponential Fitting , 2015, SIAM J. Sci. Comput..

[11]  Arjan van der Schaft,et al.  Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..

[12]  Ninoslav Truhar,et al.  Mixed control of vibrational systems , 2019, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[13]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  Matthias Voigt,et al.  Semi‐active ℋ∞ damping optimization by adaptive interpolation , 2020, Numer. Linear Algebra Appl..

[15]  U. Desai,et al.  A transformation approach to stochastic model reduction , 1984 .

[16]  Serkan Gugercin,et al.  Interpolatory projection methods for structure-preserving model reduction , 2009, Syst. Control. Lett..

[17]  Karl Meerbergen,et al.  Accelerating Optimization of Parametric Linear Systems by Model Order Reduction , 2013, SIAM J. Optim..

[18]  Wim Desmet,et al.  Parametric model order reduction without a priori sampling for low rank changes in vibro-acoustic systems , 2019 .

[19]  Stefano Grivet-Talocia,et al.  Passive Macromodeling: Theory and Applications , 2015 .

[20]  Jens Saak,et al.  An ℋ 2  ⊗ ℒ 2 ‐Optimal Model Order Reduction Approach for Parametric Linear Time‐Invariant Systems , 2018, PAMM.

[21]  A. Antoulas,et al.  A framework for the solution of the generalized realization problem , 2007 .

[22]  Zlatko Drmac,et al.  Vector Fitting for Matrix-valued Rational Approximation , 2015, SIAM J. Sci. Comput..

[23]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[24]  Nicole Marheineke,et al.  On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks , 2017, SIAM J. Sci. Comput..

[25]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[26]  Harbir Antil,et al.  Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system , 2011, Optim. Methods Softw..

[27]  Serkan Gugercin,et al.  An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems , 2008 .

[28]  Serkan Gugercin,et al.  Damping optimization of parameter dependent mechanical systems by rational interpolation , 2017, Adv. Comput. Math..

[29]  E. Jonckheere,et al.  A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds , 1988 .

[30]  Gene H. Golub,et al.  Matrix computations , 1983 .

[31]  Karen Willcox,et al.  Preface: Model Reduction and Approximation: Theory and Algorithms , 2017 .

[32]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[33]  Joost Rommes,et al.  Computing Transfer Function Dominant Poles of Large-Scale Second-Order Dynamical Systems , 2008, SIAM J. Sci. Comput..

[34]  Peter Benner,et al.  Dimension Reduction of Large-Scale Systems , 2005 .

[35]  Athanasios C. Antoulas,et al.  Data-Driven Parametrized Model Reduction in the Loewner Framework , 2014, SIAM J. Sci. Comput..

[36]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[37]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[38]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[39]  Peter Benner,et al.  Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und InterpolationModel Reduction for Parametric Systems Using Balanced Truncation and Interpolation , 2009, Autom..

[40]  A. Antoulas,et al.  Interpolatory Methods for Model Reduction , 2020 .

[41]  Peter Benner,et al.  Mapping Parameters Across System Boundaries: Parameterized Model Reduction with Low Rank Variability in Dynamics , 2014 .

[42]  Karl Meerbergen,et al.  Parametric model order reduction of damped mechanical systems via the block Arnoldi process , 2013, Appl. Math. Lett..

[43]  Stefan Volkwein,et al.  Model Order Reduction for PDE Constrained Optimization , 2014 .

[44]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[45]  Ninoslav Truhar,et al.  Optimization of material with modal damping , 2012, Appl. Math. Comput..

[46]  Peter Benner,et al.  Optimal damping of selected eigenfrequencies using dimension reduction , 2013, Numer. Linear Algebra Appl..

[47]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[48]  Stefan Güttel,et al.  The RKFIT Algorithm for Nonlinear Rational Approximation , 2017, SIAM J. Sci. Comput..

[49]  Lloyd N. Trefethen,et al.  The AAA Algorithm for Rational Approximation , 2016, SIAM J. Sci. Comput..

[50]  L. Trefethen,et al.  Robust rational interpolation and least-squares , 2011 .

[51]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[52]  Matthias Heinkenschloss,et al.  Reduced Order Modeling for Time-Dependent Optimization Problems with Initial Value Controls , 2018, SIAM J. Sci. Comput..

[53]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[54]  S. Grivet-Talocia,et al.  On the Parallelization of Vector Fitting Algorithms , 2011, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[55]  Arjan van der Schaft,et al.  Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos , 2011, IEEE Transactions on Automatic Control.

[56]  Athanasios C. Antoulas,et al.  On the Scalar Rational Interpolation Problem , 1986 .

[57]  Peter Benner,et al.  Interpolatory Projection Methods for Parameterized Model Reduction , 2011, SIAM J. Sci. Comput..

[58]  Oliver Lass,et al.  A certified model reduction approach for robust parameter optimization with PDE constraints , 2017, Advances in Computational Mathematics.

[59]  Peter Benner,et al.  Dimension reduction for damping optimization in linear vibrating systems , 2011 .

[60]  C. Sanathanan,et al.  Transfer function synthesis as a ratio of two complex polynomials , 1963 .