Geometric computing in computer graphics and robotics using conformal geometric algebra

In computer graphics and robotics a lot of different mathematical systems like vector algebra, homogenous coordinates, quaternions or dual quaternions are used for different applications. Now it seems that a change of paradigm is lying ahead of us based on Conformal Geometric Algebra unifying all of these different approaches in one mathematical system. Conformal Geometric Algebra is a very powerful mathematical framework. Due to its geometric intuitiveness, compactness and simplicity it is easy to develop new algorithms. Algorithms based on Conformal Geometric Algebra lead to enhanced quality, a reduction of development time, better understandable and better maintainable solutions. Often a clear structure and greater elegance results in lower runtime performance. However, it will be shown that algorithms based on Conformal Geometric Algebra can even be faster than conventional algorithms. The main contribution of this thesis is the geometrically intuitive and - nevertheless - efficient algorithm for a computer animation application, namely an inverse kinematics algorithm for a virtual character. This algorithm is based on an embedding of quaternions in Conformal Geometric Algebra. For performance reasons two optimization approaches are used in a way to make the application now three times faster than the conventional solution. With these results we are convinced that Geometric Computing using Conformal Geometric Algebra will become more and more fruitful in a great variety of applications in computer graphics and robotics.

[1]  Peter R. Wilson,et al.  Hardware Implementation Of a Geometric Algebra Processor Core. , 2005 .

[2]  Marc Alexa,et al.  Competitive Runtime Performance for Inverse Kinematics Algorithms using Conformal Geometric Algebra , 2006, Eurographics.

[3]  J. Michael McCarthy,et al.  Dual Quaternion Synthesis of Constrained Robots , 2002 .

[4]  W. Forstner,et al.  Uncertain Geometry with Circles, Spheres and Conics , 2006 .

[5]  Dietmar Hildenbrand Geometric computing in computer graphics using conformal geometric algebra , 2005, Comput. Graph..

[6]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[7]  David Hestenes,et al.  Old Wine in New Bottles: A New Algebraic Framework for Computational Geometry , 2001 .

[8]  Zaharia,et al.  The Interface Specification and Implementation Internals of a Program Module for Geometric Algebra , 2002 .

[9]  Eduardo Bayro-Corrochano,et al.  Robot Perception and Action Using Conformal Geometric Algebra , 2005 .

[10]  Joan Lasenby,et al.  A Geometric Analysis of the Trifocal Tensor , 1998, IVCNZ.

[11]  Leo Dorst,et al.  Performance and elegance of five models of 3 D Euclidean geometry in a ray tracing application ∗ , 2003 .

[12]  Eduardo Bayro-Corrochano,et al.  Inverse Kinematics Computation in Computer Graphics and Robotics Using Conformal Geometric Algebra , 2008 .

[13]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics , 1984 .

[14]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[15]  Joan Lasenby,et al.  A unified description of multiple view geometry , 2001 .

[16]  Leo Dorst,et al.  Geometric Algebra , 2019, Computer Vision, A Reference Guide.

[17]  Thomas Kalbe Beschreibung der Dynamik elastisch gekoppelter Körper in konformaler geometrischer Algebra , 2006 .

[18]  David Hestenes,et al.  Generalized homogeneous coordinates for computational geometry , 2001 .

[19]  Eduardo Bayro-Corrochano,et al.  Motor Algebra for 3D Kinematics: The Case of the Hand-Eye Calibration , 2000, Journal of Mathematical Imaging and Vision.

[20]  Joan Lasenby,et al.  New Geometric Methods for Computer Vision: An Application to Structure and Motion Estimation , 1998, International Journal of Computer Vision.

[21]  Jun Zhao Motion Optimization of Kinematic Chains Based on Dynamics Parameters in Conformal Geometric Algebra , 2005 .

[22]  Gerald Sommer,et al.  Implementation of a Clifford Algebra Co-Processor Design on a Field Programmable Gate Array , 2004 .

[23]  Falko Kuester,et al.  Humanoid synthesis using Clifford algebra , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[24]  Katsu Yamane,et al.  Simulating and Generating Motions of Human Figures , 2004, Springer Tracts in Advanced Robotics.

[25]  Giorgio Vassallo,et al.  CliffoSor, an Innovative FPGA-based Architecture for Geometric Algebra , 2005, ERSA.

[26]  Rafał Abłamowicz Clifford Algebra Computations with Maple , 1996 .

[27]  Bruno Siciliano,et al.  Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.

[28]  D. Hestenes,et al.  Projective geometry with Clifford algebra , 1991 .

[29]  Eduardo Bayro-Corrochano,et al.  Kinematics and diferential kinematics of binocular robot heads , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[30]  Leo Dorst,et al.  Honing geometric algebra for its use in the computer sciences , 2001 .

[31]  Leo Dorst,et al.  The making of GABLE: a geometric algebra learning environment in Matlab , 2001 .

[32]  Stephen Mann,et al.  Geometric algebra for computer science - an object-oriented approach to geometry , 2007, The Morgan Kaufmann series in computer graphics.

[33]  Bodo Rosenhahn,et al.  Pose estimation revisited , 2006 .

[34]  Hans-Peter Seidel,et al.  A Comparison of Shape Matching Methods for Contour Based Pose Estimation , 2006, IWCIA.

[35]  Eckhard Hitzer,et al.  Euclidean Geometric Objects in the Clifford Geometric Algebra of {Origin, 3-Space, Infinity} , 2005, 1306.1007.

[36]  Eduardo Bayro-Corrochano,et al.  Inverse kinematics, fixation and grasping using conformal geometric algebra , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[37]  C. Doran,et al.  Geometric Algebra for Physicists , 2003 .

[38]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[39]  Haidan Zhang Grasping Strategies for a Virtual Barrett Hand Based on Conformal Geometric Algebra , 2006 .

[40]  Bodo Rosenhahn,et al.  The Twist Representation of Free-form Objects , 2006 .

[41]  Eduardo Bayro-Corrochano,et al.  A new methodology for computing invariants in computer vision , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[42]  Gerald Sommer,et al.  Applications of Geometric Algebra in Robot Vision , 2004, IWMM/GIAE.

[43]  J. Michael McCarthy,et al.  Sizing a Serial Chain to Fit a Task Trajectory Using Clifford Algebra Exponentials , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[44]  Gerald Sommer,et al.  The Inversion Camera Model , 2006, DAGM-Symposium.

[45]  Yusheng Wang Algorithm and Performance of the Grasping Movement of a Human-Arm-Like Chain Based on Conformal Geometric Algebra , 2006 .

[46]  Leo Dorst,et al.  Geometric algebra: A computational framework for geometrical applications ({Part II: Applications}) , 2002 .

[47]  Bodo Rosenhahn,et al.  A System for Marker-Less Human Motion Estimation , 2005, DAGM-Symposium.

[48]  David Hestenes New Foundations for Classical Mechanics , 1986 .

[49]  Leo Dorst,et al.  Modeling 3D Euclidean Geometry , 2003, IEEE Computer Graphics and Applications.

[50]  Leo Dorst,et al.  3 D Euclidean Geometry Through Conformal Geometric Algebra ( a GAViewer tutorial ) , 2005 .

[51]  Leo Dorst,et al.  Geometric algebra: A computational framework for geometrical applications (Part I: Algebra) , 2002 .

[52]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[53]  Norman I. Badler,et al.  Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs , 2000, Graph. Model..

[54]  Eduardo Bayro-Corrochano,et al.  Advanced Geometric Approach for Graphics and Visual Guided Robot Object Manipulation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[55]  Joan Lasenby,et al.  Applications of Conformal Geometric Algebra in Computer Vision and Graphics , 2004, IWMM/GIAE.

[56]  Gerald Sommer,et al.  Geometric Computing with Clifford Algebras , 2001, Springer Berlin Heidelberg.

[57]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[58]  Cristian Sminchisescu,et al.  Kinematic jump processes for monocular 3D human tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[59]  Leo Dorst,et al.  Modeling and visualization of 3D polygonal mesh surfaces using geometric algebra , 2004, Comput. Graph..

[60]  Bodo Rosenhahn,et al.  Pose Estimation in Conformal Geometric Algebra Part I: The Stratification of Mathematical Spaces , 2005, Journal of Mathematical Imaging and Vision.

[61]  Joan Lasenby,et al.  Oriented Conformal Geometric Algebra , 2008 .

[62]  Gerald Sommer,et al.  Geometry and Kinematics with Uncertain Data , 2006, ECCV.