Estimation of the Joint Spectral Radius

The joint spectral radius of a set of matrices is a generalization of the concept of spectral radius of a matrix. Such notation has many applications in the computer science, and more generally in applied mathematics. It has been used, for example in graph theory, control theory, capacity of codes, continuity of wavelets, overlap-free words, trackable graphs. It is impossible to provide analytic formulae for this quantity and therefore any estimation are highly desired. The main result of this paper is to provide an estimation of the joint spectral radius in the terms of matrices norms and spectral radii.

[1]  Jean Berstel,et al.  Growth of repetition-free words -- a review , 2005, Theor. Comput. Sci..

[2]  Jerzy Klamka,et al.  About the number of the lower Bohl exponents of diagonal discrete linear time-varying systems , 2014, 11th IEEE International Conference on Control & Automation (ICCA).

[3]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[4]  A. Czornik On the generalized spectral subradius , 2005 .

[5]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[6]  A. Czornik,et al.  On the spectrum of discrete time-varying linear systems , 2013 .

[7]  A. Czornik,et al.  Corrigendum Lyapunov exponents for systems with unbounded coefficients , 2013 .

[8]  Vincent D. Blondel,et al.  Computing the Growth of the Number of Overlap-Free Words with Spectra of Matrices , 2008, LATIN.

[9]  V. Protasov The Geometric Approach for Computing the Joint Spectral Radius , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[11]  Adam Czornik,et al.  Falseness of the Finiteness Property of the Spectral Subradius , 2007, Int. J. Appl. Math. Comput. Sci..

[12]  George Cybenko,et al.  The theory of trackability with applications to sensor networks , 2008, TOSN.

[13]  Adam Czornik,et al.  Set of possible values of maximal Lyapunov exponents of discrete time-varying linear system , 2008, Autom..

[14]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[15]  Artur Babiarz,et al.  On the number of upper Bohl exponents for diagonal discrete time-varying linear system , 2015 .

[16]  D. Colella,et al.  Characterizations of Scaling Functions: Continuous Solutions , 1994 .

[17]  Vincent D. Blondel,et al.  On the Complexity of Computing the Capacity of Codes That Avoid Forbidden Difference Patterns , 2006, IEEE Transactions on Information Theory.

[18]  Shashi Phoha,et al.  Tracking multiple targets with self-organizing distributed ground sensors , 2004, J. Parallel Distributed Comput..

[19]  Aleksander Nawrat,et al.  On the stability of Lyapunov exponents of discrete linear systems , 2013, 2013 European Control Conference (ECC).

[20]  V. Kozyakin ITERATIVE BUILDING OF BARABANOV NORMS AND COMPUTATION OF THE JOINT SPECTRAL RADIUS FOR MATRIX SETS , 2008, 0810.2154.

[21]  C. Desoer Erratum: Slowly varying discrete system xi+1=Aixi , 1970 .

[22]  Michał Niezabitowski On the Bohl and general exponents of the discrete time-varying linear system , 2014 .

[23]  Vincent D. Blondel,et al.  Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..

[24]  Владимир Юрьевич Протасов,et al.  К задаче об асимптотике функции разбиения@@@On the Asymptotics of the Binary Partition Function , 2004 .

[25]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[26]  R. Lima,et al.  Exact Lyapunov exponent for infinite products of random matrices , 1994, chao-dyn/9407013.

[27]  C. Desoer Slowly varying discrete system xi+1=Aixi , 1970 .

[28]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[29]  N. Dyn,et al.  Generalized Refinement Equations and Subdivision Processes , 1995 .

[30]  Michal Niezabitowski,et al.  About the properties of the upper Bohl exponents of diagonal discrete linear time-varying systems , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[31]  A. Jadbabaie,et al.  Approximation of the joint spectral radius using sum of squares , 2007, 0712.2887.

[32]  F. Wirth The generalized spectral radius and extremal norms , 2002 .

[33]  Raphaël M. Jungers,et al.  Weak stability of switching dynamical systems and fast computation of the p-radius of matrices , 2010, 49th IEEE Conference on Decision and Control (CDC).

[34]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[35]  Adam Czornik,et al.  Alternative formulae for lower general exponent of discrete linear time-varying systems , 2015, J. Frankl. Inst..

[36]  Владимир Юрьевич Протасов,et al.  Асимптотика функции разбиения@@@Asymptotic behaviour of the partition function , 2000 .

[37]  A. Czornik,et al.  On the Lyapunov exponents of a class of second-order discrete time linear systems with bounded perturbations , 2013 .

[38]  Adam Czornik,et al.  The relations between the senior upper general exponent and the upper Bohl exponents , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[39]  M. Maesumi Optimal norms and the computation of joint spectral radius of matrices , 2008 .

[40]  V. Protasov On the Asymptotics of the Binary Partition Function , 2004 .

[41]  Victor S. Kozyakin,et al.  Algebraic Unsolvability of Problem of Absolute Stability of Desynchronized Systems , 2013, 1301.5409.

[42]  Vincent D. Blondel,et al.  Undecidable Problems for Probabilistic Automata of Fixed Dimension , 2003, Theory of Computing Systems.

[43]  A. Czornik,et al.  Lyapunov exponents for systems with unbounded coefficients , 2013 .

[44]  G. Gripenberg COMPUTING THE JOINT SPECTRAL RADIUS , 1996 .

[45]  Nicola Guglielmi,et al.  An algorithm for finding extremal polytope norms of matrix families , 2008 .

[46]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[47]  Nicola Guglielmi,et al.  Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..

[48]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[49]  V. Protasov Asymptotic behaviour of the partition function , 2000 .

[50]  Vladimir Yu. Protasov Refinement equations with nonnegative coefficients , 2000 .

[51]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[52]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[53]  Robert K. Brayton,et al.  Constructive stability and asymptotic stability of dynamical systems , 1980 .

[54]  G. Rota,et al.  A note on the joint spectral radius , 1960 .