Coding Strategies for Genetic Algorithms and Neural Nets

The interaction between coding and learning rules in neural nets NNs and between coding and genetic operators in genetic algorithms GAs is discussed The underlying principle advocated is that similar things in the world should have similar codes Similarity metrics are suggested for the coding of images and numerical quantities in neural nets and for the coding of neural network structures in genetic algorithms A principal component analysis of natural images yields receptive elds resembling hori zontal and vertical edge and bar detectors The orientation sensitivity of the bar detector components is found to match a psychophysical model suggesting that the brain may make some use of principal components in its visual processing Experiments are reported on the e ects of di erent input and output codings on the accuracy of neural nets handling numeric data It is found that simple analogue and interpo lation codes are most successful Experiments on the coding of image data demonstrate the sensitivity of nal performance to the internal structure of the net The interaction between the coding of the target problem and reproduction operators of mutation and recombination in GAs are discussed and illustrated The possibilities for using GAs to adapt aspects of NNs are considered The permutation problem which a ects attempts to use GAs both to train net weights and adapt net structures is illustrated and methods to reduce it suggested Empirical tests using a simulated net design problem to reduce evaluation times indicate that the permutation problem may not be as severe as has been thought but suggest the utility of a sorting recombination operator that matches hidden units according to the number of connections they have in common A number of experiments using GAs to design network structures are reported both to specify a net to be trained from random weights and to prune a pre trained net Three di erent coding methods are tried and various sorting recombination operators evaluated The results indicate that appropriate sorting can be bene cial but the e ects are problem dependent It is shown that the GA tends to over t the net to the particular set of test criteria to the possible detriment of wider generalisation ability A method of testing the ability of a GA to make progress in the presence of noise by adding a penalty ag is described

[1]  Peter J. B. Hancock,et al.  Pruning Neural Nets by Genetic Algorithm , 1992 .

[2]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[3]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[4]  David J. Chalmers,et al.  The Evolution of Learning: An Experiment in Genetic Connectionism , 1991 .

[5]  David G. Stork,et al.  Evolution and Learning in Neural Networks , 1990, NIPS.

[6]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[7]  D. Parisi,et al.  Growing neural networks , 1991 .

[8]  D. Ackley Stochastic iterated genetic hillclimbing , 1987 .

[9]  Y. Chien,et al.  Pattern classification and scene analysis , 1974 .

[10]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[11]  D. Rumelhart,et al.  Generalization by weight-elimination applied to currency exchange rate prediction , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[12]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[13]  Stefan Bornholdt,et al.  General asymmetric neural networks and structure design by genetic algorithms: a learning rule for temporal patterns , 1992, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[14]  Hiroaki Kitano,et al.  Empirical Studies on the Speed of Convergence of Neural Network Training Using Genetic Algorithms , 1990, AAAI.

[15]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[16]  C. Malsburg Nervous Structures with Dynamical Links , 1985 .

[17]  Alexander H. Waibel,et al.  Modular Construction of Time-Delay Neural Networks for Speech Recognition , 1989, Neural Computation.

[18]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[19]  Reinhard Männer,et al.  Parallel Problem Solving from Nature , 1991 .

[20]  John R. Koza,et al.  Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems , 1990 .

[21]  Terrence J. Sejnowski,et al.  Analysis of hidden units in a layered network trained to classify sonar targets , 1988, Neural Networks.

[22]  S. McFee,et al.  Determining an approximate finite element mesh density using neural network techniques , 1992 .

[23]  Gunar E. Liepins,et al.  Schema Disruption , 1991, ICGA.

[24]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[25]  Reiko Tanese,et al.  Parallel Genetic Algorithms for a Hypercube , 1987, ICGA.

[26]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[27]  L. Darrell Whitley,et al.  Genetic algorithms and neural networks: optimizing connections and connectivity , 1990, Parallel Comput..

[28]  M. Bos,et al.  Comparison of the training of neural networks for quantitative x-ray fluorescence spectrometry by a genetic algorithm and backward error propagation , 1991 .

[29]  J. Nadal,et al.  Learning in feedforward layered networks: the tiling algorithm , 1989 .

[30]  Yoshua Bengio,et al.  Learning a synaptic learning rule , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[31]  D. J. Wallace,et al.  Training with noise and the storage of correlated patterns in a neural network model , 1989 .

[32]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[33]  Heinz Mühlenbein,et al.  Parallel Genetic Algorithms, Population Genetics, and Combinatorial Optimization , 1989, Parallelism, Learning, Evolution.

[34]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[35]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[36]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[37]  Tariq Samad,et al.  Towards the Genetic Synthesisof Neural Networks , 1989, ICGA.

[38]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[39]  L. Darrell Whitley,et al.  Genetic Reinforcement Learning with Multilayer Neural Networks , 1991, ICGA.

[40]  M. Golea,et al.  A Convergence Theorem for Sequential Learning in Two-Layer Perceptrons , 1990 .

[41]  David E. Goldberg,et al.  Genetic Algorithms and the Variance of Fitness , 1991, Complex Syst..

[42]  D. B. Fogel,et al.  AN INFORMATION CRITERION FOR OPTIMAL NEURAL NETWORK SELECTION , 1990, 1990 Conference Record Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, 1990..

[43]  Gerrit Kateman,et al.  Application of Genetic Algorithms in Chemometrics , 1989, ICGA.

[44]  B. Hall,et al.  Adaptive evolution that requires multiple spontaneous mutations: mutations involving base substitutions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[45]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[46]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[47]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[48]  X. Yao A Review of Evolutionary Artiicial Neural Networks 1 2 , 1993 .

[49]  Geoffrey E. Hinton,et al.  Experiments on Learning by Back Propagation. , 1986 .

[50]  P. Foster,et al.  Directed mutation: between unicorns and goats , 1992, Journal of bacteriology.

[51]  D. Mackay,et al.  Bayesian methods for adaptive models , 1992 .

[52]  D. Foster,et al.  Asymmetries in oriented-line detection indicate two orthogonal filters in early vision , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[53]  Richard Lippmann,et al.  Using Genetic Algorithms to Improve Pattern Classification Performance , 1990, NIPS.

[54]  R. Dawkins The Blind Watchmaker , 1986 .

[55]  Gregory C. DeAngelis,et al.  Depth is encoded in the visual cortex by a specialized receptive field structure , 1991, Nature.

[56]  David R. Jefferson,et al.  An Artificial Neural Network Representation for Artificial Organisms , 1990, PPSN.

[57]  Kiyotoshi Matsuoka,et al.  Noise injection into inputs in back-propagation learning , 1992, IEEE Trans. Syst. Man Cybern..

[58]  Michael I. Jordan Supervised learning and systems with excess degrees of freedom , 1988 .

[59]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[60]  Albert Donally Bethke,et al.  Genetic Algorithms as Function Optimizers , 1980 .

[61]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[62]  Pentti Kanerva,et al.  Contour-Map Encoding of Shape for Early Vision , 1989, NIPS.

[63]  Yoshio Hirose,et al.  Backpropagation algorithm which varies the number of hidden units , 1989, International 1989 Joint Conference on Neural Networks.

[64]  David E. Goldberg,et al.  Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy , 1987, ICGA.

[65]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[66]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[67]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[68]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[69]  Marcus Frean,et al.  The Upstart Algorithm: A Method for Constructing and Training Feedforward Neural Networks , 1990, Neural Computation.

[70]  C. von der Malsburg Self-organization of orientation sensitive cells in the striate cortex. , 1973, Kybernetik.

[71]  Leslie S. Smith,et al.  GANNET: Genetic Design of a Neural Net for Face Recognition , 1990, PPSN.

[72]  R. Hecht-Nielsen ON THE ALGEBRAIC STRUCTURE OF FEEDFORWARD NETWORK WEIGHT SPACES , 1990 .

[73]  Michael R. W. Dawson,et al.  Modifying the Generalized Delta Rule to Train Networks of Non-monotonic Processors for Pattern Classification , 1992 .

[74]  Stefano Nolfi,et al.  Econets: Neural networks that learn in an environment , 1990 .

[75]  Robert Hecht-Nielsen,et al.  The Munificence of High Dimensionality , 1992 .

[76]  Larry J. Eshelman,et al.  Biases in the Crossover Landscape , 1989, ICGA.

[77]  Jan Torreele,et al.  Temporal Processing with Recurrent Networks: An Evolutionary Approach , 1991, ICGA.

[78]  Lawrence Davis,et al.  Genetic Algorithms and Communication Link Speed Design: Theoretical Considerations , 1987, ICGA.

[79]  Paulien Hogeweg,et al.  Redundant Coding of an NP-Complete Problem Allows Effective Genetic Algorithm Search , 1990, PPSN.

[80]  C.W. Anderson,et al.  Learning to control an inverted pendulum using neural networks , 1989, IEEE Control Systems Magazine.

[81]  Dana S. Richards,et al.  Punctuated Equilibria: A Parallel Genetic Algorithm , 1987, ICGA.

[82]  T R Vidyasagar,et al.  Relationship between preferred orientation and ordinal position in neurones of cat striate cortex , 1990, Visual Neuroscience.

[83]  Tom Tollenaere,et al.  SuperSAB: Fast adaptive back propagation with good scaling properties , 1990, Neural Networks.

[84]  Richard E. Lenski,et al.  Experimental evidence for an alternative to directed mutation in thebgl operon , 1992, Nature.

[85]  Nicholas J. Radcliffe,et al.  Forma Analysis and Random Respectful Recombination , 1991, ICGA.

[86]  D. Mackay,et al.  Analysis of Linsker's application of Hebbian rules to linear networks , 1990 .

[87]  T. Chung,et al.  Classifying impulse radar waveforms using principle components analysis and neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[88]  Geoffrey E. Hinton,et al.  TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations , 1989, NIPS.

[89]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[90]  Stefano Noffi,et al.  Recall of Sequences of Items by a Neural Network , 1991 .

[91]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[92]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[93]  John F. Kolen,et al.  Backpropagation is Sensitive to Initial Conditions , 1990, Complex Syst..

[94]  Richard K. Belew,et al.  Evolving networks: using the genetic algorithm with connectionist learning , 1990 .

[95]  R. Baddeley,et al.  A statistical analysis of natural images matches psychophysically derived orientation tuning curves , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[96]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[97]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[98]  John J. Grefenstette,et al.  Genetic Search with Approximate Function Evaluation , 1985, ICGA.

[99]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[100]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[101]  Nicholas J. Radcliffe,et al.  Genetic neural networks on MIMD computers , 1992 .

[102]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[103]  E. D. Adrian,et al.  The Basis of Sensation , 1928, The Indian Medical Gazette.

[104]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[105]  D. Pomerleau Eecient T Raining of Artiicial Neural Networks for Autonomous Navigation , 1991 .

[106]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[107]  Alan F. Murray Multilayer Perceptron Learning Optimized for On-Chip Implementation: A Noise-Robust System , 1992, Neural Computation.

[108]  B. Xu,et al.  PPNN: a faster learning and better generalizing neural net , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[109]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[110]  D. J. Wallace,et al.  Training with noise: application to word and text storage , 1989 .

[111]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[112]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[113]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[114]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[115]  Michael D. Vose,et al.  Formalizing Genetic Algorithms , 1991 .

[116]  H. Akaike A new look at the statistical model identification , 1974 .

[117]  Ingo Rechenberg,et al.  Evolution Strategy: Nature’s Way of Optimization , 1989 .

[118]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[119]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[120]  Eric Saund Abstraction and Representation of Continuous Variables in Connectionist Networks , 1986, AAAI.

[121]  M.R. Azimi-Sadjadi,et al.  Terrain classification in SAR images using principal components analysis and neural networks , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[122]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[123]  Kim T. Blackwell,et al.  Classification of Japanese Kanji using principal component analysis as a preprocessor to an artificial neural network , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[124]  D. Perrett,et al.  Time course of neural responses discriminating different views of the face and head. , 1992, Journal of neurophysiology.

[125]  M. L. Rossen,et al.  Experiments with Representation in Neural Networks: Object Motion, Speech, and Arithmetic , 1990 .

[126]  W. Singer,et al.  Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity , 1979, Nature.

[127]  Thomas S. Ray,et al.  An Approach to the Synthesis of Life , 1991 .

[128]  Lawrence Davis,et al.  Bit-Climbing, Representational Bias, and Test Suite Design , 1991, ICGA.

[129]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Isabelle Guyon,et al.  Structural Risk Minimization for Character Recognition , 1991, NIPS.

[131]  Alexis P. Wieland,et al.  Evolving Controls for Unstable Systems , 1991 .

[132]  G. Gertner,et al.  Modeling red pine tree survival with an artificial neural network , 1991 .

[133]  William A. Phillips,et al.  A Biologically Supported Error-Correcting Learning Rule , 1991, Neural Computation.

[134]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[135]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[136]  R. Hecht-Nielsen Counterpropagation networks. , 1987, Applied optics.

[137]  Thomas P. Caudell,et al.  Parametric Connectivity: Training of Constrained Networks using Genetic Algorithms , 1989, ICGA.

[138]  David Bentley Development of Insect Nervous Systems , 1977 .

[139]  Jorge Fernández Falcón Simulated Evolution of Modular Networks , 1991, IWANN.

[140]  J. Goodman,et al.  Neural networks for computation: number representations and programming complexity. , 1986, Applied optics.

[141]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[142]  J. David Schaffer,et al.  Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms , 1988, ML.

[143]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[144]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[145]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[146]  R. Watt,et al.  A theory of the primitive spatial code in human vision , 1985, Vision Research.

[147]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[148]  Wolfram Schiffmann,et al.  Performance Evaluation of Evolutionarily Created Neural Network Topologies , 1990, PPSN.

[149]  R. Linsker,et al.  From basic network principles to neural architecture , 1986 .

[150]  John E. Moody,et al.  The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems , 1991, NIPS.

[151]  R. Rescorla A theory of pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement , 1972 .

[152]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[153]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[154]  Richard K. Belew,et al.  When Both Individuals and Populations Search: Adding Simple Learning to the Genetic Algorithm , 1989, ICGA.

[155]  J. Lettvin,et al.  Multiple meaning in single visual units. , 1970, Brain, behavior and evolution.

[156]  N. Dodd,et al.  Optimisation of artificial neural network structure using genetic techniques on multiple transputers , 1991 .

[157]  Chuanyi Ji,et al.  Generalizing Smoothness Constraints from Discrete Samples , 1990, Neural Computation.

[158]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[159]  Peter J. B. Hancock,et al.  Recombination Operators for the Design of Neural Nets by Genetic Algorithm , 1992, Parallel Problem Solving from Nature.

[160]  Domenico Parisi,et al.  Evolving organisms that can reach for objects , 1991 .