Image-based separation of diffuse and specular reflections using environmental structured illumination

We present an image-based method for separating diffuse and specular reflections using environmental structured illumination. Two types of structured illumination are discussed: phase-shifted sine wave patterns, and phase-shifted binary stripe patterns. In both cases the low-pass filtering nature of diffuse reflections is utilized to separate the reflection components. We illustrate our method on a wide range of example scenes and applications.

[1]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[2]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[3]  R. Woodham,et al.  Photometric Stereo: Lambertian Reflectance and Light Sources with Unknown Direction and Strength , 1991 .

[4]  Terrance E. Boult,et al.  Constraining Object Features Using a Polarization Reflectance Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Franc Solina,et al.  Separating Diffuse and Specular Component of Image Irradiance by Translating a Camera , 1993, CAIP.

[6]  Katsushi Ikeuchi,et al.  Temporal-color space analysis of reflection , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Shree K. Nayar,et al.  Removal of specularities using color and polarization , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Volker Müller Elimination of Specular Surface-Reflectance Using Polarized and Unpolarized Light , 1996, ECCV.

[9]  Katsushi Ikeuchi,et al.  Object shape and reflectance modeling from observation , 1997, SIGGRAPH.

[10]  Sang Wook Lee,et al.  Estimation of diffuse and specular appearance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[12]  P. Hanrahan,et al.  On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Stephen Lin,et al.  Separation of diffuse and specular reflection in color images , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[14]  Stephen Lin,et al.  Variational Specular Separation Using Color and Polarization , 2002, MVA.

[15]  Stephen Lin,et al.  Diffuse-Specular Separation and Depth Recovery from Image Sequences , 2002, ECCV.

[16]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Sang Wook Lee,et al.  Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation , 1996, International Journal of Computer Vision.

[18]  Guy Godin,et al.  Separation of diffuse and specular components of surface reflection by use of polarization and statistical analysis of images , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Shree K. Nayar,et al.  Separation of Reflection Components Using Color and Polarization , 1997, International Journal of Computer Vision.

[20]  Katsushi Ikeuchi,et al.  Separating reflection components based on chromaticity and noise analysis , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Takeo Kanade,et al.  The measurement of highlights in color images , 1988, International Journal of Computer Vision.

[22]  Steven M. Seitz,et al.  Example-based photometric stereo: shape reconstruction with general, varying BRDFs , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Katsushi Ikeuchi,et al.  Separating reflection components of textured surfaces using a single image , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  David J. Kriegman,et al.  Beyond Lambert: reconstructing specular surfaces using color , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[25]  Katsushi Ikeuchi,et al.  Reflection components decomposition of textured surfaces using linear basis functions , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  Hans-Peter Seidel,et al.  3D acquisition of mirroring objects using striped patterns , 2005, Graph. Model..

[27]  Katsushi Ikeuchi,et al.  Separating Reflection Components of Textured Surfaces Using a Single Image , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Hans-Peter Seidel,et al.  Mesostructure from Specularity , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[29]  In-So Kweon,et al.  Fast Separation of Reflection Components using a Specularity-Invariant Image Representation , 2006, 2006 International Conference on Image Processing.

[30]  Nam Ik Cho,et al.  Stochastic Approach to Separate Diffuse and Specular Reflections , 2006, 2006 International Conference on Image Processing.

[31]  Ramesh Raskar,et al.  Fast separation of direct and global components of a scene using high frequency illumination , 2006, ACM Trans. Graph..

[32]  David J. Kriegman,et al.  Specularity Removal in Images and Videos: A PDE Approach , 2006, ECCV.

[33]  P. Debevec,et al.  A Reflective Light Stage , 2006 .

[34]  Pieter Peers,et al.  Rapid Acquisition of Specular and Diffuse Normal Maps from Polarized Spherical Gradient Illumination , 2007 .

[35]  Song Zhang,et al.  Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. , 2007, Applied optics.

[36]  Philippe Bekaert,et al.  High quality mesostructure acquisition using specularities , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.