Hybridizing Differential Evolution and Particle Swarm Optimization to Design Powerful Optimizers: A Review and Taxonomy

Differential evolution (DE) and particle swarm optimization (PSO) are two formidable population-based optimizers (POs) that follow different philosophies and paradigms, which are successfully and widely applied in scientific and engineering research. The hybridization between DE and PSO represents a promising way to create more powerful optimizers, especially for specific problem solving. In the past decade, numerous hybrids of DE and PSO have emerged with diverse design ideas from many researchers. This paper attempts to comprehensively review the existing hybrids based on DE and PSO with the goal of collection of different ideas to build a systematic taxonomy of hybridization strategies. Taking into account five hybridization factors, i.e., the relationship between parent optimizers, hybridization level, operating order (OO), type of information transfer (TIT), and type of transferred information (TTI), we propose several classification mechanisms and a versatile taxonomy to differentiate and analyze various hybridization strategies. A large number of hybrids, which include the hybrids of DE and PSO and several other representative hybrids, are categorized according to the taxonomy. The taxonomy can be utilized not only as a tool to identify different hybridization strategies, but also as a reference to design hybrid optimizers. The tradeoff between exploration and exploitation regarding hybridization design is discussed and highlighted. Based on the taxonomy proposed, this paper also indicates several promising lines of research that are worthy of devotion in future.

[1]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[2]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[3]  John Yen,et al.  A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[5]  Swagatam Das,et al.  Automatic Clustering Using an Improved Differential Evolution Algorithm , 2007 .

[6]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[7]  Wei Xu,et al.  A hybrid particle swarm optimization approach with prior crossover differential evolution , 2009, GEC '09.

[8]  Ganesh K. Venayagamoorthy,et al.  RNN based MIMO channel prediction , 2010, Signal Process..

[9]  James Kennedy The Particle Swarm as Collaborative Sampling of the Search Space , 2007, Adv. Complex Syst..

[10]  Ville Tirronen,et al.  Scale factor inheritance mechanism in distributed differential evolution , 2009, Soft Comput..

[11]  Andy J. Keane,et al.  Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[12]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[13]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[14]  Andries Petrus Engelbrecht,et al.  Locating multiple optima using particle swarm optimization , 2007, Appl. Math. Comput..

[15]  Quan Yang,et al.  Research on Hybrid PSODE with Triple Populations Based on Multiple Differential Evolutionary Models , 2010, 2010 International Conference on Electrical and Control Engineering.

[16]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[17]  Jean-Michel Renders,et al.  Hybrid methods using genetic algorithms for global optimization , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[18]  Jie Chen,et al.  An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization , 2010, Science China Information Sciences.

[19]  Ferrante Neri,et al.  Memetic Compact Differential Evolution for Cartesian Robot Control , 2010, IEEE Computational Intelligence Magazine.

[20]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[21]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[22]  Hitoshi Iba,et al.  Accelerating Differential Evolution Using an Adaptive Local Search , 2008, IEEE Transactions on Evolutionary Computation.

[23]  Bin Li,et al.  Differential evolution based particle swarm optimizer for neural network learning , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[24]  David E. Goldberg,et al.  Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..

[25]  Luca Maria Gambardella,et al.  Adaptive memory programming: A unified view of metaheuristics , 1998, Eur. J. Oper. Res..

[26]  Xiao-Feng Xie,et al.  SWAF: Swarm Algorithm Framework for Numerical Optimization , 2004, GECCO.

[27]  Andries Petrus Engelbrecht,et al.  Hybridizing PSO and DE for improved vector evaluated multi-objective optimization , 2009, 2009 IEEE Congress on Evolutionary Computation.

[28]  Kalyanmoy Deb,et al.  Selected Applications of Natural Computing , 2010 .

[29]  Meng Zhang,et al.  Chaotic co-evolutionary algorithm based on differential evolution and particle swarm optimization , 2009, 2009 IEEE International Conference on Automation and Logistics.

[30]  Ling Wang,et al.  An Effective PSO-Based Hybrid Algorithm for Multiobjective Permutation Flow Shop Scheduling , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[31]  Dexian Huang,et al.  An effective hybrid DE-based algorithm for multi-objective flow shop scheduling with limited buffers , 2009, Comput. Oper. Res..

[32]  Michael G. Epitropakis,et al.  Balancing the exploration and exploitation capabilities of the Differential Evolution Algorithm , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[33]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[34]  Carlos García-Martínez,et al.  Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report , 2010, Comput. Oper. Res..

[35]  Min Gui,et al.  Adding Local Search to Particle Swarm Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[36]  Jongsoo Lee,et al.  An integrated method of particle swarm optimization and differential evolution , 2009 .

[37]  Ying Wu,et al.  A hybrid optimization method of Particle Swarm Optimization and Cultural Algorithm , 2010, 2010 Sixth International Conference on Natural Computation.

[38]  Ajith Abraham,et al.  Inserting information sharing mechanism of PSO to improve the convergence of DE , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[39]  Günther R. Raidi A unified view on hybrid metaheuristics , 2006 .

[40]  J. Kennedy,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[41]  Shang-Jeng Tsai,et al.  Efficient Population Utilization Strategy for Particle Swarm Optimizer , 2009, IEEE Trans. Syst. Man Cybern. Part B.

[42]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[43]  Zhihua Cai,et al.  A Novel Hybrid Particle Swarm Optimization for Multi-Objective Problems , 2009, AICI.

[44]  Peter B. Luh,et al.  A unified optimization framework for population-based methods , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[45]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[46]  Yixin Chen,et al.  Hybrid constrained simulated annealing and genetic algorithms for nonlinear constrained optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[47]  Sanjoy Das Nelder-Mead Evolutionary Hybrid Algorithms , 2009, Encyclopedia of Artificial Intelligence.

[48]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[49]  Amit Konar,et al.  Improving particle swarm optimization with differentially perturbed velocity , 2005, GECCO '05.

[50]  Shanhe Jiang,et al.  Particle swarm optimization algorithm based on velocity differential mutation , 2009, 2009 Chinese Control and Decision Conference.

[51]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[52]  Ben Niu,et al.  A Novel PSO-DE-Based Hybrid Algorithm for Global Optimization , 2008, ICIC.

[53]  El-Ghazali Talbi,et al.  Hybridizing exact methods and metaheuristics: A taxonomy , 2009, Eur. J. Oper. Res..

[54]  Graham Kendall,et al.  Hyper-Heuristics: An Emerging Direction in Modern Search Technology , 2003, Handbook of Metaheuristics.

[55]  Han Huang,et al.  A Particle Swarm Optimization Algorithm with Differential Evolution , 2007, 2007 International Conference on Machine Learning and Cybernetics.

[56]  Donald C. Wunsch,et al.  Clustering with differential evolution particle swarm optimization , 2010, IEEE Congress on Evolutionary Computation.

[57]  Fan Wu,et al.  Diploid hybrid Particle swarm optimization with differential evolution for Open Vehicle Routing Problem , 2010, 2010 8th World Congress on Intelligent Control and Automation.

[58]  Baoxian Lv,et al.  The Properties of a Class of Higher-dimensional Wavelet Packets According to an Integer-valued Dilation Matrix , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[59]  Chin-Teng Lin,et al.  A Hybrid of Cooperative Particle Swarm Optimization and Cultural Algorithm for Neural Fuzzy Networks and Its Prediction Applications , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[60]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[61]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[62]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[63]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[64]  Amit Konar,et al.  An Evolutionary SPDE Breeding-Based Hybrid Particle Swarm Optimizer: Application in Coordination of Robot Ants for Camera Coverage Area Optimization , 2005, PReMI.

[65]  Xiaodong Li,et al.  Choosing Leaders for Multi-objective PSO Algorithms Using Differential Evolution , 2008, SEAL.

[66]  N. P. Padhy,et al.  Application of particle swarm optimization technique and its variants to generation expansion planning problem , 2004 .

[67]  Ling Wang,et al.  An effective hybrid optimization strategy for job-shop scheduling problems , 2001, Comput. Oper. Res..

[68]  Masafumi Hagiwara,et al.  An integrated framework of hybrid evolutionary computations , 2009, 2009 IEEE Congress on Evolutionary Computation.

[69]  Gary G. Yen,et al.  PSO-Based Multiobjective Optimization With Dynamic Population Size and Adaptive Local Archives , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[70]  Ben Niu,et al.  Design of T-S Fuzzy Model Based on PSODE Algorithm , 2008, ICIC.

[71]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[72]  Andries Petrus Engelbrecht,et al.  Bare bones differential evolution , 2009, Eur. J. Oper. Res..

[73]  Michel Gendreau,et al.  Metaheuristics in Combinatorial Optimization , 2022 .

[74]  Pan Hong-xia,et al.  A hybrid PSO-DV based intelligent method for fault diagnosis of gear-box , 2009, 2009 IEEE International Symposium on Computational Intelligence in Robotics and Automation - (CIRA).

[75]  Andries Petrus Engelbrecht,et al.  Differential Evolution Based Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[76]  Shuhong Wang,et al.  Robust Optimization in HTS Cable Based on DEPSO and Design for Six Sigma , 2008, 2008 IEEE Industry Applications Society Annual Meeting.

[77]  Jie Chen,et al.  Optimal Contraction Theorem for Exploration–Exploitation Tradeoff in Search and Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[78]  Andries Petrus Engelbrecht,et al.  Self-adaptive barebones differential evolution , 2007, 2007 IEEE Congress on Evolutionary Computation.

[79]  Hirosato Nomura,et al.  Cultural algorithm-based quantum-behaved particle swarm optimization , 2010, Int. J. Comput. Math..

[80]  Andries Petrus Engelbrecht,et al.  A novel particle swarm niching technique based on extensive vector operations , 2010, Natural Computing.

[81]  Jiayao Wang,et al.  Spatial clustering with obstacles constraints using PSO-DV and K-Medoids , 2008, 2008 3rd International Conference on Intelligent System and Knowledge Engineering.

[82]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[83]  Christian Blum,et al.  Hybrid Metaheuristics, An Emerging Approach to Optimization , 2008, Hybrid Metaheuristics.

[84]  Xiaodong Li,et al.  Tackling high dimensional nonseparable optimization problems by cooperatively coevolving particle swarms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[85]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[86]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[87]  Chung Min Kwan,et al.  Timetable Synchronization of Mass Rapid Transit System Using Multiobjective Evolutionary Approach , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[88]  Xiaodong Li,et al.  Efficient differential evolution using speciation for multimodal function optimization , 2005, GECCO '05.

[89]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[90]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[91]  Tim Hendtlass,et al.  A Combined Swarm Differential Evolution Algorithm for Optimization Problems , 2001, IEA/AIE.

[92]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[93]  M. Batouche,et al.  Hybrid particle swarm with differential evolution for multimodal image registration , 2004, 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04..

[94]  Fakhri Karray,et al.  The modified particle swarm optimization for the design of the Beta Basis Function neural networks , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[95]  Donald C. Wunsch,et al.  Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization , 2007, Neural Networks.

[96]  G. S. Dulikravich,et al.  Multidisciplinary Hybrid Constrained GA Optimization , 1999 .

[97]  K. Shanti Swarup,et al.  Evolutionary Tristate PSO for Strategic Bidding of Pumped-Storage Hydroelectric Plant , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[98]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[99]  Yun-ping Chen,et al.  A Master-Slave Particle Swarm Optimization Algorithm for Solving Constrained Optimization Problems , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[100]  Janez Brest,et al.  Population size reduction for the differential evolution algorithm , 2008, Applied Intelligence.

[101]  Jason Teo,et al.  Exploring dynamic self-adaptive populations in differential evolution , 2006, Soft Comput..

[102]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[103]  Qingfu Zhang,et al.  DE/EDA: A new evolutionary algorithm for global optimization , 2005, Inf. Sci..

[104]  L. P. Fatti,et al.  A Differential Free Point Generation Scheme in the Differential Evolution Algorithm , 2006, J. Glob. Optim..

[105]  Yu Tian,et al.  Multistage Inventory Hybrid Intelligent Optimization Under Grey Fuzzy Uncertainty , 2006, 2006 International Conference on Computational Intelligence and Security.

[106]  Xin Yao,et al.  Large scale evolutionary optimization using cooperative coevolution , 2008, Inf. Sci..

[107]  Yew-Soon Ong,et al.  A Probabilistic Memetic Framework , 2009, IEEE Transactions on Evolutionary Computation.

[108]  Xing Xu,et al.  A novel differential evolution scheme combined with particle swarm intelligence , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[109]  Hans-Paul Schwefel,et al.  Evolution strategies: A family of non-linear optimization techniques based on imitating some principles of organic evolution , 1984, Ann. Oper. Res..

[110]  Ajith Abraham,et al.  Hybrid differential evolution - Particle Swarm Optimization algorithm for solving global optimization problems , 2008, 2008 Third International Conference on Digital Information Management.

[111]  Bo Liu,et al.  A hybrid PSO-DV based intelligent method for fault diagnosis of gear-box , 2009, CIRA.

[112]  Kao-Shing Hwang,et al.  CO-EVOLUTIONARY HYBRID DIFFERENTIAL EVOLUTION FOR MIXED-INTEGER OPTIMIZATION PROBLEMS , 2001 .

[113]  Jim E. Smith,et al.  Coevolving Memetic Algorithms: A Review and Progress Report , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[114]  Ville Tirronen,et al.  Super-fit control adaptation in memetic differential evolution frameworks , 2009, Soft Comput..

[115]  Hisao Ishibuchi,et al.  Special Issue on Memetic Algorithms , 2007, IEEE Trans. Syst. Man Cybern. Part B.

[116]  Uday K. Chakraborty,et al.  Advances in Differential Evolution , 2010 .

[117]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[118]  Shu Jun,et al.  A Hybrid of Differential Evolution and Particle Swarm Optimization for Global Optimization , 2009, 2009 Third International Symposium on Intelligent Information Technology Application.

[119]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[120]  He Huang,et al.  The Back Analysis of Mechanics Parameters Based on DEPSO Algorithm and Parallel FEM , 2009, 2009 International Conference on Computational Intelligence and Natural Computing.

[121]  Sanjoy Das,et al.  Multi-objective hybrid PSO using µ-fuzzy dominance , 2007, GECCO '07.

[122]  Alain Hertz,et al.  A Taxonomy of Evolutionary Algorithms in Combinatorial Optimization , 1999, J. Heuristics.

[123]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[124]  T. Jayabarathi,et al.  Combined Hybrid Differential Particle Swarm Optimization Approach for Economic Dispatch Problems , 2010 .

[125]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[126]  Changsheng Zhang,et al.  The geometric constraint solving based on hybrid differential evolution and particle swarm optimization algorithm , 2010, 2010 International Conference on Intelligent Control and Information Processing.

[127]  Jian Li,et al.  A Hybrid Differential Evolution Method for Practical Engineering Problems , 2009, 2009 IITA International Conference on Control, Automation and Systems Engineering (case 2009).

[128]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[129]  Lorenzo Casalino,et al.  Cooperative evolutionary algorithm for space trajectory optimization , 2009 .

[130]  Ganesh K. Venayagamoorthy,et al.  Evolving Digital Circuits Using Hybrid Particle Swarm Optimization and Differential Evolution , 2006, Int. J. Neural Syst..

[131]  Hongwei Mao,et al.  Optimization of the Supply Chain Production Planning Programming under Hybrid Uncertainties , 2008, 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA).

[132]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[133]  Yong Zhang,et al.  Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm , 2010 .

[134]  S. Khamsawang,et al.  Hybrid PSO-DE for solving the economic dispatch problem with generator constraints , 2010, 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE).

[135]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[136]  Pillala Praveena,et al.  DEPSO and Bacterial Foraging Pptimization based Dynamic Economic Dispatch with non-smooth fuel cost functions , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[137]  Chia-Feng Juang,et al.  A hybrid of genetic algorithm and particle swarm optimization for recurrent network design , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[138]  Xiao-Feng Xie,et al.  DEPSO: hybrid particle swarm with differential evolution operator , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[139]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[140]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[141]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[142]  Dexian Huang,et al.  Designing Neural Networks Using Hybrid Particle Swarm Optimization , 2005, ISNN.

[143]  Ender Özcan,et al.  Hill Climbers and Mutational Heuristics in Hyperheuristics , 2006, PPSN.

[144]  George S. Dulikravich,et al.  Control of Unsteady Solidification Via Optimized Magnetic Fields , 2005 .

[145]  Jason Teo,et al.  Self-adaptive population sizing for a tune-free differential evolution , 2009, Soft Comput..

[146]  Lorenzo Casalino,et al.  Enhanced Continuous Tabu Search in a Hybrid Evolutionary Algorithm for the Optimization of Interplanetary Trajectories , 2009 .

[147]  Sanjoy Das,et al.  A Multiobjective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks , 2008, IEEE Transactions on Evolutionary Computation.

[148]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[149]  Swagatam Das,et al.  Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm , 2010, Inf. Sci..

[150]  Xingyu Wang,et al.  Cultured Differential Particle Swarm Optimization for Numerical Optimization Problems , 2007, Third International Conference on Natural Computation (ICNC 2007).

[151]  Dantong Ouyang,et al.  A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization , 2009, Oper. Res. Lett..

[152]  Dashuai Sun,et al.  Hybrid Differential Evolution Particle Swarm Optimization Algorithm for Reactive Power Optimization , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[153]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[154]  Bo Liu,et al.  An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[155]  Michael G. Epitropakis,et al.  Evolving cognitive and social experience in Particle Swarm Optimization through Differential Evolution , 2010, IEEE Congress on Evolutionary Computation.

[156]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[157]  Stefan Voß,et al.  Controlled Pool Maintenance for Metaheuristics , 2005 .

[158]  Fei Peng,et al.  Population-Based Algorithm Portfolios for Numerical Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[159]  Carlos Cotta,et al.  Proceedings of the 5th International Workshop on Hybrid Metaheuristics , 2008 .

[160]  Riccardo Poli,et al.  Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers During Stagnation , 2009, IEEE Transactions on Evolutionary Computation.

[161]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[162]  Chin-Teng Lin,et al.  Nonlinear System Control Using Adaptive Neural Fuzzy Networks Based on a Modified Differential Evolution , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).