Unsupervised Deep Single‐Image Intrinsic Decomposition using Illumination‐Varying Image Sequences

Machine learning based Single Image Intrinsic Decomposition (SIID) methods decompose a captured scene into its albedo and shading images by using the knowledge of a large set of known and realistic ground truth decompositions. Collecting and annotating such a dataset is an approach that cannot scale to sufficient variety and realism. We free ourselves from this limitation by training on unannotated images.

[1]  Pierre-Yves Laffont,et al.  Intrinsic Decomposition of Image Sequences from Local Temporal Variations , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[2]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[3]  Luc Van Gool,et al.  DARN: a Deep Adversial Residual Network for Intrinsic Image Decomposition , 2016, ArXiv.

[4]  Zhengqi Li,et al.  Learning Intrinsic Image Decomposition from Watching the World , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[6]  Jitendra Malik,et al.  Shape, Illumination, and Reflectance from Shading , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Thomas A. Funkhouser,et al.  Semantic Scene Completion from a Single Depth Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Sylvain Paris,et al.  User-assisted image compositing for photographic lighting , 2013, ACM Trans. Graph..

[9]  Stephen Lin,et al.  A Closed-Form Solution to Retinex with Nonlocal Texture Constraints , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Christian Theobalt,et al.  Live intrinsic video , 2016, ACM Trans. Graph..

[11]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  Balazs Kovacs,et al.  Shading Annotations in the Wild , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Peter V. Gehler,et al.  Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance , 2011, NIPS.

[14]  Alexei A. Efros,et al.  Webcam clip art: appearance and illuminant transfer from time-lapse sequences , 2009, ACM Trans. Graph..

[15]  Balazs Kovacs,et al.  Intrinsic Decompositions for Image Editing , 2017, Comput. Graph. Forum.

[16]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[17]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[18]  英樹 藤堂,et al.  Interactive intrinsic video editing , 2014, ACM Trans. Graph..

[19]  Edward H. Adelson,et al.  Ground truth dataset and baseline evaluations for intrinsic image algorithms , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Jinze Yu,et al.  Rank-constrained PCA for intrinsic images decomposition , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[21]  Vladlen Koltun,et al.  A Simple Model for Intrinsic Image Decomposition with Depth Cues , 2013, 2013 IEEE International Conference on Computer Vision.

[22]  Jian Shi,et al.  Learning Non-Lambertian Object Intrinsics Across ShapeNet Categories , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Alexei A. Efros,et al.  Learning Data-Driven Reflectance Priors for Intrinsic Image Decomposition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[24]  Xuelong Li,et al.  Intrinsic images using optimization , 2011, CVPR 2011.

[25]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[26]  Stephen Lin,et al.  Estimating Intrinsic Images from Image Sequences with Biased Illumination , 2004, ECCV.

[27]  Stella X. Yu,et al.  Direct Intrinsics: Learning Albedo-Shading Decomposition by Convolutional Regression , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[28]  Jiajun Wu,et al.  Self-Supervised Intrinsic Image Decomposition , 2017, NIPS.

[29]  Noah Snavely,et al.  Intrinsic images in the wild , 2014, ACM Trans. Graph..

[30]  Chuohao Yeo,et al.  Intrinsic images decomposition using a local and global sparse representation of reflectance , 2011, CVPR 2011.

[31]  E. Reinhard Photographic Tone Reproduction for Digital Images , 2002 .

[32]  Adolfo Muñoz,et al.  Intrinsic Images by Clustering , 2012, Comput. Graph. Forum.