Secret Sharing, Rank Inequalities, and Information Inequalities

Beimel and Orlov proved that all information inequalities on four or five variables, together with all information inequalities on more than five variables that are known to date, provide lower bounds on the size of the shares in secret sharing schemes that are at most linear on the number of participants. We present here another two negative results about the power of information inequalities in the search for lower bounds in secret sharing. First, we prove that all information inequalities on a bounded number of variables can only provide lower bounds that are polynomial on the number of participants. Second, we prove that the rank inequalities that are derived from the existence of two common informations can provide only lower bounds that are at most cubic in the number of participants.

[1]  Satoru Fujishige,et al.  Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..

[2]  Jessica Ruth Metcalf-Burton Improved upper bounds for the information rates of the secret sharing schemes induced by the Vámos matroid , 2011, Discret. Math..

[3]  Randall Dougherty,et al.  Linear rank inequalities on five or more variables , 2009, ArXiv.

[4]  G. R. Blakley,et al.  Safeguarding cryptographic keys , 1899, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[5]  Anna Gál,et al.  Lower bounds for monotone span programs , 2005, computational complexity.

[6]  Amos Beimel,et al.  Secret Sharing and Non-Shannon Information Inequalities , 2011, IEEE Transactions on Information Theory.

[7]  Terence Chan Recent Progresses in Characterising Information Inequalities , 2011, Entropy.

[8]  Alfredo De Santis,et al.  Tight Bounds on the Information Rate of Secret Sharing Schemes , 1997, Des. Codes Cryptogr..

[9]  Randall Dougherty,et al.  Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.

[10]  Tarik Kaced Equivalence of two proof techniques for non-shannon-type inequalities , 2013, 2013 IEEE International Symposium on Information Theory.

[11]  M. Lunelli,et al.  Representation of matroids , 2002, math/0202294.

[12]  Nikolai K. Vereshchagin,et al.  Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..

[13]  James G. Oxley,et al.  Matroid theory , 1992 .

[14]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[15]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[16]  Alfredo De Santis,et al.  On the size of shares for secret sharing schemes , 1991, Journal of Cryptology.

[17]  Randall Dougherty,et al.  Non-Shannon Information Inequalities in Four Random Variables , 2011, ArXiv.

[18]  Avi Wigderson,et al.  Superpolynomial Lower Bounds for Monotone Span Programs , 1996, Comb..

[19]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[20]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[21]  K. Martin,et al.  Perfect secret sharing schemes on five participants , 1996 .

[22]  László Csirmaz,et al.  An impossibility result on graph secret sharing , 2009, Des. Codes Cryptogr..

[23]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.

[24]  Carles Padró,et al.  Matroids Can Be Far from Ideal Secret Sharing , 2008, TCC.

[25]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[26]  Zhen Zhang,et al.  On a new non-Shannon-type information inequality , 2002, Proceedings IEEE International Symposium on Information Theory,.

[27]  Carles Padró,et al.  Multi-linear Secret-Sharing Schemes , 2014, TCC.

[28]  László Csirmaz,et al.  Entropy Region and Convolution , 2016, IEEE Transactions on Information Theory.

[29]  Anna Gál A characterization of span program size and improved lower bounds for monotone span programs , 1998, STOC '98.

[30]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[31]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[32]  R. Rado Note on Independence Functions , 1957 .

[33]  Ryan Kinser,et al.  New inequalities for subspace arrangements , 2009, J. Comb. Theory, Ser. A.