Secret Sharing, Rank Inequalities, and Information Inequalities
暂无分享,去创建一个
[1] Satoru Fujishige,et al. Polymatroidal Dependence Structure of a Set of Random Variables , 1978, Inf. Control..
[2] Jessica Ruth Metcalf-Burton. Improved upper bounds for the information rates of the secret sharing schemes induced by the Vámos matroid , 2011, Discret. Math..
[3] Randall Dougherty,et al. Linear rank inequalities on five or more variables , 2009, ArXiv.
[4] G. R. Blakley,et al. Safeguarding cryptographic keys , 1899, 1979 International Workshop on Managing Requirements Knowledge (MARK).
[5] Anna Gál,et al. Lower bounds for monotone span programs , 2005, computational complexity.
[6] Amos Beimel,et al. Secret Sharing and Non-Shannon Information Inequalities , 2011, IEEE Transactions on Information Theory.
[7] Terence Chan. Recent Progresses in Characterising Information Inequalities , 2011, Entropy.
[8] Alfredo De Santis,et al. Tight Bounds on the Information Rate of Secret Sharing Schemes , 1997, Des. Codes Cryptogr..
[9] Randall Dougherty,et al. Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.
[10] Tarik Kaced. Equivalence of two proof techniques for non-shannon-type inequalities , 2013, 2013 IEEE International Symposium on Information Theory.
[11] M. Lunelli,et al. Representation of matroids , 2002, math/0202294.
[12] Nikolai K. Vereshchagin,et al. Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..
[13] James G. Oxley,et al. Matroid theory , 1992 .
[14] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[15] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[16] Alfredo De Santis,et al. On the size of shares for secret sharing schemes , 1991, Journal of Cryptology.
[17] Randall Dougherty,et al. Non-Shannon Information Inequalities in Four Random Variables , 2011, ArXiv.
[18] Avi Wigderson,et al. Superpolynomial Lower Bounds for Monotone Span Programs , 1996, Comb..
[19] Adi Shamir,et al. How to share a secret , 1979, CACM.
[20] M. R. Rao,et al. Combinatorial Optimization , 1992, NATO ASI Series.
[21] K. Martin,et al. Perfect secret sharing schemes on five participants , 1996 .
[22] László Csirmaz,et al. An impossibility result on graph secret sharing , 2009, Des. Codes Cryptogr..
[23] Frantisek Matús,et al. Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.
[24] Carles Padró,et al. Matroids Can Be Far from Ideal Secret Sharing , 2008, TCC.
[25] Josh Benaloh,et al. Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.
[26] Zhen Zhang,et al. On a new non-Shannon-type information inequality , 2002, Proceedings IEEE International Symposium on Information Theory,.
[27] Carles Padró,et al. Multi-linear Secret-Sharing Schemes , 2014, TCC.
[28] László Csirmaz,et al. Entropy Region and Convolution , 2016, IEEE Transactions on Information Theory.
[29] Anna Gál. A characterization of span program size and improved lower bounds for monotone span programs , 1998, STOC '98.
[30] Amos Beimel,et al. Secret-Sharing Schemes: A Survey , 2011, IWCC.
[31] László Csirmaz,et al. The Size of a Share Must Be Large , 1994, Journal of Cryptology.
[32] R. Rado. Note on Independence Functions , 1957 .
[33] Ryan Kinser,et al. New inequalities for subspace arrangements , 2009, J. Comb. Theory, Ser. A.