Protein folding and de novo protein design for biotechnological applications.

[1]  Jeffrey J. Gray,et al.  Structure-based non-canonical amino acid design to covalently crosslink an antibody-antigen complex. , 2014, Journal of structural biology.

[2]  David E. Kim,et al.  One contact for every twelve residues allows robust and accurate topology‐level protein structure modeling , 2014, Proteins.

[3]  Keehyoung Joo,et al.  Protein structure modeling for CASP10 by multiple layers of global optimization , 2014, Proteins.

[4]  Yang Zhang Interplay of I‐TASSER and QUARK for template‐based and ab initio protein structure prediction in CASP10 , 2014, Proteins.

[5]  Christodoulos A Floudas,et al.  Novel compstatin family peptides inhibit complement activation by drusen-like deposits in human retinal pigmented epithelial cell cultures. , 2013, Experimental eye research.

[6]  Adam K. Sieradzan,et al.  Lessons from application of the UNRES force field to predictions of structures of CASP10 targets , 2013, Proceedings of the National Academy of Sciences.

[7]  Christodoulos A Floudas,et al.  Protein WISDOM: a workbench for in silico de novo design of biomolecules. , 2013, Journal of visualized experiments : JoVE.

[8]  K. Lindorff-Larsen,et al.  Atomic-level description of ubiquitin folding , 2013, Proceedings of the National Academy of Sciences.

[9]  Xiangdong Wang Bioinformatics of Human Proteomics , 2013, Translational Bioinformatics.

[10]  D. Craik,et al.  The Future of Peptide‐based Drugs , 2013, Chemical biology & drug design.

[11]  E. Pirogova,et al.  Toward Development of Novel Peptide-Based Cancer Therapeutics: Computational Design and Experimental Evaluation , 2013 .

[12]  Costas D. Maranas,et al.  MAPs: a database of modular antibody parts for predicting tertiary structures and designing affinity matured antibodies , 2013, BMC Bioinformatics.

[13]  K. Dill,et al.  The Protein-Folding Problem, 50 Years On , 2012, Science.

[14]  Stefano Piana,et al.  Refinement of protein structure homology models via long, all‐atom molecular dynamics simulations , 2012, Proteins.

[15]  Yang Zhang,et al.  Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field , 2012, Proteins.

[16]  J. Skolnick,et al.  Further evidence for the likely completeness of the library of solved single domain protein structures. , 2012, The journal of physical chemistry. B.

[17]  D. Baker,et al.  Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy , 2012, Science.

[18]  H. K. Fung,et al.  De novo peptide design with C3a receptor agonist and antagonist activities: theoretical predictions and experimental validation. , 2012, Journal of medicinal chemistry.

[19]  C A Floudas,et al.  ASTRO-FOLD 2.0: an Enhanced Framework for Protein Structure Prediction. , 2012, AIChE journal. American Institute of Chemical Engineers.

[20]  Christopher M. MacDermaid,et al.  Computational design of a protein crystal , 2012, Proceedings of the National Academy of Sciences.

[21]  Brian Kuhlman,et al.  Structure-based design of supercharged, highly thermoresistant antibodies. , 2012, Chemistry & biology.

[22]  C. Floudas,et al.  β-sheet Topology Prediction with High Precision and Recall for β and Mixed α/β Proteins , 2012, PloS one.

[23]  Ryo Takeuchi,et al.  Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. , 2012, Nature chemical biology.

[24]  Jeffrey Skolnick,et al.  Template‐based protein structure modeling using TASSERVMT , 2012, Proteins.

[25]  Z. Popovic,et al.  Increased Diels-Alderase activity through backbone remodeling guided by Foldit players , 2012, Nature Biotechnology.

[26]  Massimiliano Pontil,et al.  PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments , 2012, Bioinform..

[27]  Yang Zhang,et al.  Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. , 2011, Structure.

[28]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[29]  Brian Kuhlman,et al.  Computational design of a symmetric homodimer using β-strand assembly , 2011, Proceedings of the National Academy of Sciences.

[30]  Dong Xu,et al.  A Protocol for Computer-Based Protein Structure and Function Prediction , 2011, Journal of visualized experiments : JoVE.

[31]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[32]  J. Skolnick,et al.  GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. , 2011, Biophysical journal.

[33]  Adam Liwo,et al.  Coarse-grained force field: general folding theory. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Irena Cosic,et al.  Biological Effects of a De Novo Designed Myxoma Virus Peptide Analogue: Evaluation of Cytotoxicity on Tumor Cells , 2011, PloS one.

[35]  Christodoulos A. Floudas,et al.  Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database , 2011, Scientific reports.

[36]  Costas D Maranas,et al.  Recent advances in computational protein design. , 2011, Current opinion in structural biology.

[37]  V. Pande,et al.  Rationally Designed Turn Promoting Mutation in the Amyloid-β Peptide Sequence Stabilizes Oligomers in Solution , 2011, PloS one.

[38]  Jason T. Stevens,et al.  Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation , 2011, Nature.

[39]  Timothy A. Whitehead,et al.  Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin , 2011, Science.

[40]  K. Lindorff-Larsen,et al.  How robust are protein folding simulations with respect to force field parameterization? , 2011, Biophysical journal.

[41]  Christopher M. MacDermaid,et al.  Theoretical and computational protein design. , 2011, Annual review of physical chemistry.

[42]  M. Gruebele,et al.  Computational design and experimental testing of the fastest-folding β-sheet protein. , 2011, Journal of molecular biology.

[43]  Michael H. Hecht,et al.  De Novo Designed Proteins from a Library of Artificial Sequences Function in Escherichia Coli and Enable Cell Growth , 2011, PloS one.

[44]  Krzysztof Fidelis,et al.  CASP9 results compared to those of previous casp experiments , 2011, Proteins.

[45]  Matthew P Jacobson,et al.  Assessment of protein structure refinement in CASP9 , 2011, Proteins.

[46]  Jinbo Xu,et al.  Raptorx: Exploiting structure information for protein alignment by statistical inference , 2011, Proteins.

[47]  Jens Meiler,et al.  ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. , 2011, Methods in enzymology.

[48]  H. K. Fung,et al.  Discovery of entry inhibitors for HIV-1 via a new de novo protein design framework. , 2010, Biophysical journal.

[49]  C D Maranas,et al.  OptCDR: a general computational method for the design of antibody complementarity determining regions for targeted epitope binding. , 2010, Protein engineering, design & selection : PEDS.

[50]  David Baker,et al.  An exciting but challenging road ahead for computational enzyme design , 2010, Protein science : a publication of the Protein Society.

[51]  L. Stamatatos,et al.  Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. , 2010, Structure.

[52]  Jasmine L. Gallaher,et al.  Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction , 2010, Science.

[53]  C. Floudas,et al.  Contact prediction for beta and alpha‐beta proteins using integer linear optimization and its impact on the first principles 3D structure prediction method ASTRO‐FOLD , 2010, Proteins.

[54]  H. K. Fung,et al.  New compstatin variants through two de novo protein design frameworks. , 2010, Biophysical journal.

[55]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[56]  M. Khrestchatisky,et al.  Synthetic therapeutic peptides: science and market. , 2010, Drug discovery today.

[57]  Wilfred Pinfold,et al.  Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis , 2009, HiPC 2009.

[58]  J. P. Grossman,et al.  Millisecond-scale molecular dynamics simulations on Anton , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[59]  George A. Khoury,et al.  Computational design of Candida boidinii xylose reductase for altered cofactor specificity , 2009, Protein science : a publication of the Protein Society.

[60]  Yang Zhang,et al.  REMO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks , 2009, Proteins.

[61]  Amy C. Anderson,et al.  Computational structure-based redesign of enzyme activity , 2009, Proceedings of the National Academy of Sciences.

[62]  C. Floudas,et al.  Towards accurate residue–residue hydrophobic contact prediction for α helical proteins via integer linear optimization , 2009, Proteins.

[63]  K. Dill,et al.  Assessment of the protein‐structure refinement category in CASP8 , 2009, Proteins.

[64]  Johannes Söding,et al.  Fast and accurate automatic structure prediction with HHpred , 2009, Proteins.

[65]  Nikolay V. Dokholyan,et al.  Identification and Rational Redesign of Peptide Ligands to CRIP1, A Novel Biomarker for Cancers , 2008, PLoS Comput. Biol..

[66]  Yang Zhang Progress and challenges in protein structure prediction. , 2008, Current opinion in structural biology.

[67]  Eric A. Althoff,et al.  Kemp elimination catalysts by computational enzyme design , 2008, Nature.

[68]  Eric A. Althoff,et al.  De Novo Computational Design of Retro-Aldol Enzymes , 2008, Science.

[69]  C A Floudas,et al.  Distance dependent centroid to centroid force fields using high resolution decoys , 2008, Proteins.

[70]  H. K. Fung,et al.  Computational de novo Peptide and Protein Design: Rigid Templates versus Flexible Templates , 2008 .

[71]  K. Dill,et al.  The protein folding problem. , 1993, Annual review of biophysics.

[72]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[73]  C A Floudas,et al.  Computational methods in protein structure prediction. , 2007, Biotechnology and bioengineering.

[74]  Sitao Wu,et al.  LOMETS: A local meta-threading-server for protein structure prediction , 2007, Nucleic acids research.

[75]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[76]  C. Maranas,et al.  IPRO: an iterative computational protein library redesign and optimization procedure. , 2006, Biophysical journal.

[77]  P. Bradley,et al.  Toward High-Resolution de Novo Structure Prediction for Small Proteins , 2005, Science.

[78]  Yang Zhang,et al.  The protein structure prediction problem could be solved using the current PDB library. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Bruce Randall Donald,et al.  A novel ensemble-based scoring and search algorithm for protein redesign, and its application to modify the substrate specificity of the gramicidin synthetase A phenylalanine adenylation enzyme , 2004, RECOMB.

[80]  C. Floudas,et al.  ASTRO-FOLD: a combinatorial and global optimization framework for Ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. , 2003, Biophysical journal.

[81]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[82]  P. Kollman,et al.  Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. , 1998, Science.

[83]  B. Berger,et al.  Protein Folding in the Hydrophobic-Hydrophilic(HP) Model is NP-Complete , 1998, J. Comput. Biol..

[84]  K Fidelis,et al.  A large‐scale experiment to assess protein structure prediction methods , 1995, Proteins.

[85]  C. Pabo Molecular technology: Designing proteins and peptides , 1983, Nature.

[86]  Drexler Ke,et al.  Molecular engineering: An approach to the development of general capabilities for molecular manipulation. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[87]  K E Drexler,et al.  Molecular engineering: An approach to the development of general capabilities for molecular manipulation. , 1981, Proceedings of the National Academy of Sciences of the United States of America.