Pedestrian localisation for indoor environments

Location information is an important source of context for ubiquitous computing systems. This paper looks at how a foot-mounted inertial unit, a detailed building model, and a particle filter can be combined to provide absolute positioning, despite the presence of drift in the inertial unit and without knowledge of the user's initial location. We show how to handle multiple floors and stairways, how to handle symmetry in the environment, and how to initialise the localisation algorithm using WiFi signal strength to reduce initial complexity. We evaluate the entire system experimentally, using an independent tracking system for ground truth. Our results show that we can track a user throughout a 8725 m2 building spanning three floors to within 0.5m 75% of the time, and to within 0.73 m 95% of the time.

[1]  Ted Kremenek,et al.  A Probabilistic Room Location Service for Wireless Networked Environments , 2001, UbiComp.

[2]  Patrick Robertson,et al.  Integration of foot-mounted inertial sensors into a Bayesian location estimation framework , 2008, 2008 5th Workshop on Positioning, Navigation and Communication.

[3]  Gaetano Borriello,et al.  Location Systems for Ubiquitous Computing , 2001, Computer.

[4]  Simon Hay,et al.  Bluetooth Tracking without Discoverability , 2009, LoCA.

[5]  Alan Bensky,et al.  Wireless positioning technologies and applications , 2008 .

[6]  Mike Hazas,et al.  A high performance privacy-oriented location system , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[7]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[8]  Hari Balakrishnan,et al.  Tracking moving devices with the cricket location system , 2004, MobiSys '04.

[9]  Bill N. Schilit,et al.  Place Lab: Device Positioning Using Radio Beacons in the Wild , 2005, Pervasive.

[10]  James H. Aylor,et al.  Computer for the 21st Century , 1999, Computer.

[11]  Hobart R. Everett,et al.  Sensors for Mobile Robots: Theory and Application , 1995 .

[12]  Oliver J. Woodman,et al.  An introduction to inertial navigation , 2007 .

[13]  Bernt Schiele,et al.  Dead reckoning from the pocket - An experimental study , 2010, 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[14]  R. S. Ornedo,et al.  GPS and radar aided inertial navigation system for missile system applications , 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153).

[15]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[16]  Johann Borenstein,et al.  Non-GPS Navigation for Emergency Responders , 2006 .

[17]  Wolfram Burgard,et al.  Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.

[18]  Stéphane Beauregard,et al.  Omnidirectional Pedestrian Navigation for First Responders , 2007, 2007 4th Workshop on Positioning, Navigation and Communication.

[19]  Bruno M. Scherzinger,et al.  Precise Robust Positioning with Inertial/GPS RTK , 2000 .

[20]  Robert Harle,et al.  RF-Based Initialisation for Inertial Pedestrian Tracking , 2009, Pervasive.

[21]  Alvaro Soto,et al.  Self Adaptive Particle Filter , 2005, IJCAI.

[22]  S. Beauregard,et al.  Indoor PDR performance enhancement using minimal map information and particle filters , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[23]  Lindsay Kleeman,et al.  Accurate odometry and error modelling for a mobile robot , 1997, Proceedings of International Conference on Robotics and Automation.

[24]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[25]  J. Krumm,et al.  Multi-camera multi-person tracking for EasyLiving , 2000, Proceedings Third IEEE International Workshop on Visual Surveillance.

[26]  Peter H. Veltink,et al.  Inertial and magnetic sensing of human movement near ferromagnetic materials , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[27]  D. Ludwig,et al.  Galileo: Benefits for Location Based Services , 2003 .

[28]  Dieter Fox,et al.  KLD-Sampling: Adaptive Particle Filters , 2001, NIPS.

[29]  Bernd Eissfeller,et al.  Indoor Positioning Using Wireless LAN Radio Signals , 2004 .

[30]  M. E. Cannon,et al.  Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment , 2006 .

[31]  Chan Gook Park,et al.  MEMS Based Pedestrian Navigation System , 2005 .

[32]  P. Groves Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems , 2007 .

[33]  D. Gebre‐Egziabher,et al.  GNSS Applications and Methods , 2009 .

[34]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[35]  Moustafa Youssef,et al.  The Horus WLAN location determination system , 2005, MobiSys '05.

[36]  Michael Harrington,et al.  Constellation: a wide-range wireless motion-tracking system for augmented reality and virtual set applications , 1998, SIGGRAPH.

[37]  G. Dedes,et al.  Indoor GPS positioning - challenges and opportunities , 2005, VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005..

[38]  Eric Foxlin,et al.  Motion Tracking Requirements and Technologies , 2002 .

[39]  Malcolm David Macnaughtan,et al.  Positioning GSM telephones , 1998, IEEE Commun. Mag..

[40]  Greg Welch,et al.  High-Performance Wide-Area Optical Tracking: The HiBall Tracking System , 2001, Presence: Teleoperators & Virtual Environments.

[41]  Greg Welch,et al.  SCAAT: incremental tracking with incomplete information , 1997, SIGGRAPH.

[42]  Wolfram Burgard,et al.  Active Mobile Robot Localization , 1997, IJCAI.

[43]  Michael J. Brooks,et al.  A Stochastic Approach to Tracking Objects Across Multiple Cameras , 2004, Australian Conference on Artificial Intelligence.

[44]  Gregory D. Abowd,et al.  PowerLine Positioning: A Practical Sub-Room-Level Indoor Location System for Domestic Use , 2006, UbiComp.

[45]  I. Forkel,et al.  A multi-wall-and-floor model for indoor radio propagation , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[46]  Patrick Weber,et al.  OpenStreetMap: User-Generated Street Maps , 2008, IEEE Pervasive Computing.

[47]  Gaetano Borriello,et al.  The location stack: a layered model for location in ubiquitous computing , 2002, Proceedings Fourth IEEE Workshop on Mobile Computing Systems and Applications.

[48]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[49]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[50]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[51]  B. Krach,et al.  Cascaded estimation architecture for integration of foot-mounted inertial sensors , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[52]  John A. Orr,et al.  WPI Precision Personnel Locator System , 2007 .

[53]  Eric Foxlin,et al.  Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter , 1996, Proceedings of the IEEE 1996 Virtual Reality Annual International Symposium.

[54]  Andrew C. Rice,et al.  Crowd-sourcing world models with OpenRoomMap , 2010, 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[55]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[56]  Henry A. Kautz,et al.  Voronoi tracking: location estimation using sparse and noisy sensor data , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[57]  Jukka Saarinen,et al.  MEMS-IMU Based Pedestrian Navigator for Handheld Devices , 2001 .

[58]  Dieter Fox,et al.  Bayesian Filtering for Location Estimation , 2003, IEEE Pervasive Comput..

[59]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[60]  D. Alvarez,et al.  Comparison of Step Length Estimators from Weareable Accelerometer Devices , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[61]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[62]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[63]  G. S. Watson Statistics on Spheres , 1983 .

[64]  Andrei Szabo,et al.  WLAN-Based Pedestrian Tracking Using Particle Filters and Low-Cost MEMS Sensors , 2007, 2007 4th Workshop on Positioning, Navigation and Communication.

[65]  Gaetano Borriello,et al.  Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study , 2004, UbiComp.

[66]  Jake K. Aggarwal,et al.  Tracking human motion using multiple cameras , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[67]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[68]  Greg Welch,et al.  Motion Tracking: No Silver Bullet, but a Respectable Arsenal , 2002, IEEE Computer Graphics and Applications.

[69]  M.A. Sotelo,et al.  Indoor Robot Localization System Using WiFi Signal Measure and Minimizing Calibration Effort , 2005, Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. ISIE 2005..

[70]  Carter,et al.  Integrated pedestrian navigation using GNSS, MEMS IMU, Magnetometer and Baro-altimeter , 2007 .

[71]  H. Weinberg Using the ADXL202 in Pedometer and Personal Navigation Applications , 2002 .

[72]  Manfred Wieser,et al.  Navigation: Principles of Positioning and Guidance , 2003 .

[73]  Paul D. Groves,et al.  A Man Motion Navigation System Using High Sensitivity GPS, MEMS IMU and Auxiliary Sensors , 2006 .

[74]  Bodhi Priyantha,et al.  The Cricket indoor location system , 2005 .

[75]  Dongsoo Han,et al.  Crowdsourced radiomap for room-level place recognition in urban environment , 2010, 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[76]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[77]  John Krumm,et al.  Location-aware computing comes of age , 2004, Computer.

[78]  Andreas Haeberlen,et al.  Practical robust localization over large-scale 802.11 wireless networks , 2004, MobiCom '04.

[79]  A. Harter,et al.  The Anatomy of a ContextAware Application , 1999, MobiCom 1999.

[80]  John Weston,et al.  Strapdown Inertial Navigation Technology, Second Edition , 2005 .

[81]  Stephane Beauregard,et al.  A Helmet-Mounted Pedestrian Dead Reckoning System , 2006 .

[82]  Thad Starner,et al.  Learning Significant Locations and Predicting User Movement with GPS , 2002, Proceedings. Sixth International Symposium on Wearable Computers,.

[83]  Andy Hopper,et al.  Implementing a Sentient Computing System , 2001, Computer.

[84]  Eric Foxlin,et al.  Pedestrian tracking with shoe-mounted inertial sensors , 2005, IEEE Computer Graphics and Applications.

[85]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[86]  Alison Brown,et al.  Precision Kinematic Alignment Using a Low- Cost GPS/INS System , 2002 .

[87]  Gaetano Borriello,et al.  The location stack , 2004 .

[88]  Fredrik Gustafsson,et al.  On Resampling Algorithms for Particle Filters , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[89]  Mike Hazas,et al.  A Novel Broadband Ultrasonic Location System , 2002, UbiComp.

[90]  Javier Nicolás Sánchez,et al.  Robust global localization using clustered particle filtering , 2002, AAAI/IAAI.

[91]  Paul D. Groves,et al.  Inertial Navigation Versus Pedestrian Dead Reckoning: Optimizing the Integration , 2007 .

[92]  Martin Klepal,et al.  A Backtracking Particle Filter for fusing building plans with PDR displacement estimates , 2008, 2008 5th Workshop on Positioning, Navigation and Communication.

[93]  Andy Hopper,et al.  The active badge location system , 1992, TOIS.

[94]  Wolfram Burgard,et al.  Position tracking with position probability grids , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[95]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[96]  Peter R. Atherton,et al.  Hidden surface removal using polygon area sorting , 1977, SIGGRAPH.

[97]  Greg Welch,et al.  The HiBall Tracker: high-performance wide-area tracking for virtual and augmented environments , 1999, VRST '99.

[98]  K. Kaemarungsi,et al.  Distribution of WLAN received signal strength indication for indoor location determination , 2006, 2006 1st International Symposium on Wireless Pervasive Computing.

[99]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[100]  A. Haghighat,et al.  Beep: 3D indoor positioning using audible sound , 2005, Second IEEE Consumer Communications and Networking Conference, 2005. CCNC. 2005.