Omnidirectional dense large-scale mapping and navigation based on meaningful triangulation

In this work, we propose a robust and efficient method to build dense 3D maps, using only the images grabbed by an omnidirectional camera. The map contains exhaustive information about both the structure and the appearance of the environment and it is well suited also for large scale environments.

[1]  Maxime Lhuillier A Generic Error Model and Its Application to Automatic 3D Modeling of Scenes Using a Catadioptric Camera , 2010, International Journal of Computer Vision.

[2]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[3]  Luc Van Gool,et al.  3D Urban Scene Modeling Integrating Recognition and Reconstruction , 2008, International Journal of Computer Vision.

[4]  Oyvind Hjelle,et al.  Triangulations and applications , 2006 .

[5]  David W. Murray,et al.  Improving the Agility of Keyframe-Based SLAM , 2008, ECCV.

[6]  Davide Scaramuzza,et al.  Omnidirectional Vision: From Calibration to Root Motion Estimation , 2007 .

[7]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Simon Lacroix,et al.  High resolution terrain mapping using low attitude aerial stereo imagery , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Tom Drummond,et al.  Edge landmarks in monocular SLAM , 2009, Image Vis. Comput..

[10]  Roland Siegwart,et al.  Appearance-Guided Monocular Omnidirectional Visual Odometry for Outdoor Ground Vehicles , 2008, IEEE Transactions on Robotics.

[11]  Emanuele Menegatti,et al.  Scalable Dense Large-Scale Mapping and Navigation , 2010, ICRA 2010.

[12]  Jana Kosecka,et al.  Piecewise planar city 3D modeling from street view panoramic sequences , 2009, CVPR.

[13]  Stefano Soatto,et al.  A semi-direct approach to structure from motion , 2003, The Visual Computer.

[14]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Ø. Hjelle,et al.  Triangulations and Applications (Mathematics and Visualization) , 2006 .

[16]  Roland Siegwart,et al.  Absolute scale in structure from motion from a single vehicle mounted camera by exploiting nonholonomic constraints , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  Stefano Soatto,et al.  Tales of shape and radiance in multiview stereo , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[18]  Patrick Rives,et al.  An Efficient Direct Method for Improving visual SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[19]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Kostas Daniilidis,et al.  Monocular visual odometry in urban environments using an omnidirectional camera , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[23]  James J. Little,et al.  /spl sigma/SLAM: stereo vision SLAM using the Rao-Blackwellised particle filter and a novel mixture proposal distribution , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..