Past and Present Perspectives on β-Lactamases

β-Lactamases, the major resistance determinant for β-lactam antibiotics in Gram-negative bacteria, are ancient enzymes whose origins can be traced back millions of years ago. These well-studied enzymes, currently numbering almost 2,800 unique proteins, initially emerged from environmental sources, most likely to protect a producing bacterium from attack by naturally occurring β-lactams. ABSTRACT β-Lactamases, the major resistance determinant for β-lactam antibiotics in Gram-negative bacteria, are ancient enzymes whose origins can be traced back millions of years ago. These well-studied enzymes, currently numbering almost 2,800 unique proteins, initially emerged from environmental sources, most likely to protect a producing bacterium from attack by naturally occurring β-lactams. Their ancestors were presumably penicillin-binding proteins that share sequence homology with β-lactamases possessing an active-site serine. Metallo-β-lactamases also exist, with one or two catalytically functional zinc ions. Although penicillinases in Gram-positive bacteria were reported shortly after penicillin was introduced clinically, transmissible β-lactamases that could hydrolyze recently approved cephalosporins, monobactams, and carbapenems later became important in Gram-negative pathogens. Nomenclature is based on one of two major systems. Originally, functional classifications were used, based on substrate and inhibitor profiles. A later scheme classifies β-lactamases according to amino acid sequences, resulting in class A, B, C, and D enzymes. A more recent nomenclature combines the molecular and biochemical classifications into 17 functional groups that describe most β-lactamases. Some of the most problematic enzymes in the clinical community include extended-spectrum β-lactamases (ESBLs) and the serine and metallo-carbapenemases, all of which are at least partially addressed with new β-lactamase inhibitor combinations. New enzyme variants continue to be described, partly because of the ease of obtaining sequence data from whole-genome sequencing studies. Often, these new enzymes are devoid of any phenotypic descriptions, making it more difficult for clinicians and antibiotic researchers to address new challenges that may be posed by unusual β-lactamases.

[1]  Malika Kumarasiri,et al.  Structural Analysis of the Role of Pseudomonas aeruginosa Penicillin-Binding Protein 5 in β-Lactam Resistance , 2013, Antimicrobial Agents and Chemotherapy.

[2]  K. Bush Characterization of beta-lactamases , 1989, Antimicrobial Agents and Chemotherapy.

[3]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[4]  J. M. Smith,et al.  Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[5]  N. Woodford,et al.  Redefining extended-spectrum β-lactamases: balancing science and clinical need—authors’ response , 2009 .

[6]  M. Page,et al.  What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles , 2017, Journal of Pharmacokinetics and Pharmacodynamics.

[7]  R. Hajdu,et al.  Metabolism of Thienamycin and Related Carbapenem Antibiotics by the Renal Dipeptidase, Dehydropeptidase-I , 1982, Antimicrobial Agents and Chemotherapy.

[8]  W. Cullmann,et al.  Heterogeneity of beta-lactamase production in Pseudomonas maltophilia, a nosocomial pathogen. , 1990, Chemotherapy.

[9]  E. Abraham,et al.  Isolation of cephalosporin C, a penicillin-like antibiotic containing D-alpha-aminoadipic acid. , 1956, The Biochemical journal.

[10]  E. Duthie The production of stable potent preparations of penicillinase. , 1947, Journal of general microbiology.

[11]  D. Gu,et al.  Genetic and Functional Characterization of blaCTX-M-199, a Novel Tazobactam and Sulbactam Resistance-Encoding Gene Located in a Conjugative mcr-1-Bearing IncI2 Plasmid , 2017, Antimicrobial Agents and Chemotherapy.

[12]  D. C. Griffith,et al.  Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae , 2017, Antimicrobial Agents and Chemotherapy.

[13]  G. Cuzon,et al.  Diversity of Carbapenemase-Producing Escherichia coli Isolates in France in 2012-2013 , 2018, Antimicrobial Agents and Chemotherapy.

[14]  P. Sears β‐lactamases , 2020, Catalysis from A to Z.

[15]  S. Mitsuhashi,et al.  Drug Resistance of Enteric Bacteria , 1968 .

[16]  H. Barrios,et al.  ESBL-producing Escherichia coli and Klebsiella pneumoniae: The most prevalent clinical isolates obtained between 2005 and 2012 in Mexico. , 2017, Journal of global antimicrobial resistance.

[17]  R. Olsen,et al.  Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae , 2014, Proceedings of the National Academy of Sciences.

[18]  B. Murray,et al.  Transferable beta-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. , 1983, The Journal of clinical investigation.

[19]  Helio S. Sader,et al.  Antimicrobial Activity of Murepavadin Tested against Clinical Isolates of Pseudomonas aeruginosa from the United States, Europe, and China , 2018, Antimicrobial Agents and Chemotherapy.

[20]  R. Cluzel,et al.  Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. , 1987, The Journal of antimicrobial chemotherapy.

[21]  P. Nordmann,et al.  Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. , 2002, Antimicrobial agents and chemotherapy.

[22]  G. Cornaglia,et al.  Cloning and Characterization of blaVIM, a New Integron-Borne Metallo-β-Lactamase Gene from a Pseudomonas aeruginosa Clinical Isolate , 1999, Antimicrobial Agents and Chemotherapy.

[23]  Zhen Shen,et al.  CTX-M-190, a Novel β-Lactamase Resistant to Tazobactam and Sulbactam, Identified in an Escherichia coli Clinical Isolate , 2016, Antimicrobial Agents and Chemotherapy.

[24]  E. Bottone Bacillus cereus, a Volatile Human Pathogen , 2010, Clinical Microbiology Reviews.

[25]  C. Fuster,et al.  Plasmid-determined beta-lactamases identified in a group of 204 ampicillin-resistant Enterobacteriaceae. , 1983, The Journal of antimicrobial chemotherapy.

[26]  D. Livermore Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods , 1987, European Journal of Clinical Microbiology.

[27]  J. Frère,et al.  Mechanistic Studies of the Inactivation of TEM-1 and P99 by NXL104, a Novel Non-β-Lactam β-Lactamase Inhibitor , 2010, Antimicrobial Agents and Chemotherapy.

[28]  V. Miriagou,et al.  Comment on: Redefining extended-spectrum beta-lactamases: balancing science and clinical need. , 2009, The Journal of antimicrobial chemotherapy.

[29]  Y. Carmeli,et al.  Molecular Epidemiology of KPC-Producing Klebsiella pneumoniae Isolates in the United States: Clonal Expansion of Multilocus Sequence Type 258 , 2009, Antimicrobial Agents and Chemotherapy.

[30]  A. Knoll,et al.  Life: the first two billion years , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Analytical Isoelectric Focusing of R Factor-Determined β-Lactamases: Correlation with Plasmid Compatibility , 1976 .

[32]  G. Gerbaud,et al.  Klebsiella pneumoniae and other Enterobacteriaceae producing novel plasmid-mediated beta-lactamases markedly active against third-generation cephalosporins: epidemiologic studies. , 1988, Reviews of infectious diseases.

[33]  P. Nordmann,et al.  OXA-48-like carbapenemases: the phantom menace. , 2012, The Journal of antimicrobial chemotherapy.

[34]  C. Rammelkamp,et al.  Resistance of Staphylococcus aureus to the Action of Penicillin.∗ , 1942 .

[35]  Sampath C Abeylath,et al.  Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics , 2008 .

[36]  A. Medeiros,et al.  Ampicillin-resistant Haemophilus influenzae type B possessing a TEM-type beta-lactamase but little permeability barrier to ampicillin. , 1975, Lancet.

[37]  P. Bradford Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat , 2001, Clinical Microbiology Reviews.

[38]  A. Fleming,et al.  Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. , 1980, Reviews of infectious diseases.

[39]  R. Bonomo,et al.  Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[40]  Robert A. Weinstein,et al.  The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace , 2017, The Journal of infectious diseases.

[41]  G. Weinstock,et al.  Molecular Characterization of a Widespread, Pathogenic, and Antibiotic Resistance-Receptive Enterococcus faecalis Lineage and Dissemination of Its Putative Pathogenicity Island , 2005, Journal of bacteriology.

[42]  Y. van de Peer,et al.  A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils , 2018, Microbiome.

[43]  S. Mobashery,et al.  Three decades of the class A beta-lactamase acyl-enzyme. , 2009, Current protein & peptide science.

[44]  B. Murray,et al.  Nucleotide sequence of the beta-lactamase gene from Enterococcus faecalis HH22 and its similarity to staphylococcal beta-lactamase genes , 1991, Antimicrobial Agents and Chemotherapy.

[45]  J. Masson,et al.  Beta-Lactamases Produced by a Pseudomonas aeruginosa Strain Highly Resistant to Carbenicillin , 1977, Antimicrobial Agents and Chemotherapy.

[46]  D J Tipper,et al.  Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[47]  F. Waldvogel,et al.  Methicillin Potentiates the Effect of Gentamicin on Methicillin-Resistant Staphylococcus aureus , 1979, Antimicrobial Agents and Chemotherapy.

[48]  P. Nordmann,et al.  Characterization of a Chromosomally Encoded Extended-Spectrum Class A β-Lactamase from Kluyvera cryocrescens , 2001, Antimicrobial Agents and Chemotherapy.

[49]  R. Bonnet Growing Group of Extended-Spectrum β-Lactamases: the CTX-M Enzymes , 2004, Antimicrobial Agents and Chemotherapy.

[50]  P. Bradford,et al.  Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. , 2004, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[51]  J. Campos,et al.  Carbapenemase-producing Escherichia coli is becoming more prevalent in Spain mainly because of the polyclonal dissemination of OXA-48. , 2016, The Journal of antimicrobial chemotherapy.

[52]  S. Mobashery,et al.  Restoration of Susceptibility of Methicillin-resistant Staphylococcus aureus to β-Lactam Antibiotics by Acidic pH , 2008, Journal of Biological Chemistry.

[53]  J. Pleiss,et al.  Network Analysis of Sequence-Function Relationships and Exploration of Sequence Space of TEM β-Lactamases , 2016, Antimicrobial Agents and Chemotherapy.

[54]  A. Barth,et al.  Genetic Background of β-Lactamases in Enterobacteriaceae Isolates from Environmental Samples , 2017, Microbial Ecology.

[55]  C Reading,et al.  Clavulanic Acid: a Beta-Lactamase-Inhibiting Beta-Lactam from Streptomyces clavuligerus , 1977, Antimicrobial Agents and Chemotherapy.

[56]  K. Bush,et al.  Classification of beta-lactamases: groups 2c, 2d, 2e, 3, and 4 , 1989, Antimicrobial Agents and Chemotherapy.

[57]  S. Miyakis,et al.  Microbiological and molecular characteristics of carbapenemase-producing Klebsiella pneumoniae endemic in a tertiary Greek hospital during 2004-2010. , 2012, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[58]  L. Bret,et al.  Inhibitor-resistant TEM (IRT) beta-lactamases with different substitutions at position 244 , 1997, Antimicrobial agents and chemotherapy.

[59]  P. Nordmann,et al.  Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae , 2004, Antimicrobial Agents and Chemotherapy.

[60]  B. Hall,et al.  Phylogenetic Analysis Shows That the OXA b-Lactamase Genes Have Been on Plasmids for Millions of Years , 2002, Journal of Molecular Evolution.

[61]  M. Kinzig,et al.  Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens , 2017, Infection.

[62]  R. Hedges,et al.  Analytical isoelectric focusing of R factor-determined beta-lactamases: correlation with plasmid compatibility , 1976, Journal of bacteriology.

[63]  A. Fleming Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. , 1980, Reviews of infectious diseases.

[64]  E. Abraham,et al.  Some properties of two extracellular beta-lactamases from Bacillus cereus 569/H. , 1967, The Biochemical journal.

[65]  D. Horn,et al.  Class restriction of cephalosporin use to control total cephalosporin resistance in nosocomial Klebsiella. , 1998, JAMA.

[66]  J. Quinn,et al.  Emergence of resistance to ceftazidime during therapy for Enterobacter cloacae infections. , 1987, The Journal of infectious diseases.

[67]  K. Bush,et al.  Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae , 2001, Antimicrobial Agents and Chemotherapy.

[68]  L. Gutmann,et al.  Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem , 1991, Antimicrobial Agents and Chemotherapy.

[69]  Jung Hun Lee,et al.  Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea). , 2005, Journal of microbiology.

[70]  K. Bush,et al.  Classification of beta-lactamases: groups 1, 2a, 2b, and 2b' , 1989, Antimicrobial Agents and Chemotherapy.

[71]  J. Campos,et al.  Carbapenem-resistant Citrobacter spp. isolated in Spain from 2013 to 2015 produced a variety of carbapenemases including VIM-1, OXA-48, KPC-2, NDM-1 and VIM-2 , 2017, The Journal of antimicrobial chemotherapy.

[72]  P. Nordmann,et al.  Chromosome-Encoded Ambler Class A β-Lactamase of Kluyvera georgiana, a Probable Progenitor of a Subgroup of CTX-M Extended-Spectrum β-Lactamases , 2002, Antimicrobial Agents and Chemotherapy.

[73]  K. Bush,et al.  Interaction of azthreonam and related monobactams with beta-lactamases from gram-negative bacteria , 1982, Antimicrobial Agents and Chemotherapy.

[74]  S. Mitsuhashi,et al.  Drug Resistance of Enteric Bacteria:XII. Unique Substrate Specificity of Penicillinase Produced by R Factor , 1967 .

[75]  S. Mitsuhashi,et al.  Drug resistance of enteric bacteria. XIV. Comparison of beta-lactamases in gram-negative rod bacteria resistant to alpha-aminobenzylpenicillin. , 1968, Japanese journal of microbiology.

[76]  B. Spratt,et al.  Penicillin-binding proteins and the future of beta-lactam antibiotics. The Seventh Fleming Lecture. , 1983, Journal of general microbiology.

[77]  Miriam Barlow,et al.  Evolution of the serine beta-lactamases: past, present and future. , 2004, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[78]  W. Witte,et al.  Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. , 2010, International journal of medical microbiology : IJMM.

[79]  E. Gotuzzo,et al.  Antibiotic resistance in a very remote Amazonas community. , 2009, International journal of antimicrobial agents.

[80]  S. Mitsuhashi,et al.  Drug Resistance of Staphylococci II. Joint Elimination and Joint Transduction of the Determinants of Penicillinase Production and Resistance to Macrolide Antibiotics , 1965, Journal of bacteriology.

[81]  G. Papanicolaou,et al.  Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae , 1990, Antimicrobial Agents and Chemotherapy.

[82]  A. Harris,et al.  The use of analytical isoelectric focusing for detection and identification of beta-lactamases. , 1975, Journal of general microbiology.

[83]  Natasa Jovanović,et al.  [Mechanisms of bacterial resistance to antibiotics]. , 2008, Medicinski pregled.

[84]  L. Sandegren,et al.  Characterization of ESBL disseminating plasmids , 2016, Infectious diseases.

[85]  L. Rice,et al.  Identification of a New Allelic Variant of the Acinetobacter baumannii Cephalosporinase , ADC-7-Lactamase : Defining a Unique Family of Class C Enzymes ‡ , 2005 .

[86]  A. Glenn,et al.  Fungal Lactamases: Their Occurrence and Function , 2017, Front. Microbiol..

[87]  B. Eisenstein,et al.  Conjugal transfer of the gonococcal penicillinase plasmid. , 1977, Science.

[88]  F. Tubau,et al.  Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection , 2018, The Journal of antimicrobial chemotherapy.

[89]  T. Walsh,et al.  VIM and IMP metallo‐β‐lactamases and other extended‐spectrum β‐lactamases in Escherichia coli and Klebsiella pneumoniae from environmental samples in a Tunisian hospital , 2011, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[90]  S. G. Waley,et al.  Penicillinase active sites: Labelling of serine‐44 in β‐lactamase I by 6β‐bromopenicillanic acid , 1979 .

[91]  C. O'callaghan,et al.  Novel Method for Detection of β-Lactamases by Using a Chromogenic Cephalosporin Substrate , 1972, Antimicrobial Agents and Chemotherapy.

[92]  A. Tomasz,et al.  Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus , 1984, Journal of bacteriology.

[93]  P. Nordmann,et al.  Extended-Spectrum Cephalosporinases in Pseudomonas aeruginosa , 2009, Antimicrobial Agents and Chemotherapy.

[94]  P. Courvalin,et al.  Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid-mediated CMY-4 and permeability alteration. , 2000, The Journal of antimicrobial chemotherapy.

[95]  R. Ambler,et al.  The structure of beta-lactamases. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  P. Nordmann,et al.  Biochemical Sequence Analyses of GES-1, a Novel Class A Extended-Spectrum β-Lactamase, and the Class 1 Integron In52 from Klebsiella pneumoniae , 2000, Antimicrobial Agents and Chemotherapy.

[97]  D. van Duin,et al.  The global epidemiology of carbapenemase-producing Enterobacteriaceae , 2017, Virulence.

[98]  H. B. Woodruff,et al.  Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. , 1979, The Journal of antibiotics.

[99]  Ronald N. Jones,et al.  Early Dissemination of NDM-1- and OXA-181-Producing Enterobacteriaceae in Indian Hospitals: Report from the SENTRY Antimicrobial Surveillance Program, 2006-2007 , 2010, Antimicrobial Agents and Chemotherapy.

[100]  C. Sanders,et al.  Inducible beta-lactamases: clinical and epidemiologic implications for use of newer cephalosporins. , 1988, Reviews of infectious diseases.

[101]  P Huovinen,et al.  Sequence of PSE-2 beta-lactamase , 1988, Antimicrobial Agents and Chemotherapy.

[102]  W. Mccormack Treatment of gonorrhea -- is penicillin passé. , 1977, The New England journal of medicine.

[103]  M. Richmond,et al.  Comparative amino acid contents of purified β‐lactamases from enteric bacteria , 1970 .

[104]  David A. Lee,et al.  Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases , 2016, PLoS Comput. Biol..

[105]  A F Goddard,et al.  Getting to the route of Helicobacter pylori treatment. , 1998, The Journal of antimicrobial chemotherapy.

[106]  G. Jacoby,et al.  Broad-spectrum, transmissible beta-lactamases. , 1988, The New England journal of medicine.

[107]  J. Quinn,et al.  SME-Type Carbapenem-Hydrolyzing Class A β-Lactamases from Geographically Diverse Serratia marcescens Strains , 2000, Antimicrobial Agents and Chemotherapy.

[108]  N. Woodford,et al.  Redefining extended-spectrum beta-lactamases: balancing science and clinical need. , 2008, The Journal of antimicrobial chemotherapy.

[109]  Gina K. Thomson,et al.  High-Stringency Evaluation of the Automated BD Phoenix CPO Detect and Rapidec Carba NP Tests for Detection and Classification of Carbapenemases , 2017, Journal of Clinical Microbiology.

[110]  C. O'callaghan,et al.  Principal beta-lactamases responsible for resistance to beta-lactam antibiotics in urinary tract infections , 1980, Antimicrobial Agents and Chemotherapy.

[111]  N. Datta,et al.  RESISTANCE TO PENICILLINS AND ITS TRANSFER IN ENTEROBACTERIACEAE. , 1965, Lancet.

[112]  J. Jansson A direct spectrophotometric assay for penicillin β-lactamase (penicillinase) , 1965 .

[113]  C. Bebrone Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. , 2007, Biochemical pharmacology.

[114]  Neil Woodford,et al.  Outbreak of Klebsiella pneumoniae Producing a New Carbapenem-Hydrolyzing Class A β-Lactamase, KPC-3, in a New York Medical Center , 2004, Antimicrobial Agents and Chemotherapy.

[115]  S. Richter,et al.  Detection and Prevalence of Penicillin-Susceptible Staphylococcus aureus in the United States in 2013 , 2016, Journal of Clinical Microbiology.

[116]  A. Ghosh,et al.  Epidemiology of penicillinase-producing Neisseria gonorrhoeae in Liverpool from 1977 to 1982. , 1984, The Journal of infection.

[117]  P. Grimont,et al.  β-Lactamases of Kluyvera ascorbata, Probable Progenitors of Some Plasmid-Encoded CTX-M Types , 2002, Antimicrobial Agents and Chemotherapy.

[118]  B. Wiedemann,et al.  Evolution of plasmid-coded resistance to broad-spectrum cephalosporins , 1985, Antimicrobial Agents and Chemotherapy.

[119]  E. Abraham,et al.  Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. , 1966, The Biochemical journal.

[120]  G. Bou,et al.  Cloning, Nucleotide Sequencing, and Analysis of the Gene Encoding an AmpC β-Lactamase in Acinetobacter baumannii , 2000, Antimicrobial Agents and Chemotherapy.

[121]  G. B. Golding,et al.  Antibiotic resistance is ancient , 2011, Nature.

[122]  D. F. Sahm,et al.  AmpC beta-lactamases. , 1998 .

[123]  E. Abraham,et al.  An Enzyme from Bacteria able to Destroy Penicillin , 1940, Nature.

[124]  R. Bonomo,et al.  Carbapenemase-Producing Organisms: A Global Scourge. , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[125]  W. Mccormack Penicillinase-producing Neisseria gonorrhoeae--a retrospective. , 1982, The New England journal of medicine.

[126]  Akinori Yamada,et al.  Distribution of antibiotic resistance genes in glacier environments. , 2013, Environmental microbiology reports.

[127]  M. Bassetti,et al.  Risk factors for bloodstream infections due to colistin-resistant KPC-producing Klebsiella pneumoniae: results from a multicenter case-control-control study. , 2015, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[128]  W. M. Kirby EXTRACTION OF A HIGHLY POTENT PENICILLIN INACTIVATOR FROM PENICILLIN RESISTANT STAPHYLOCOCCI , 1944, Science.

[129]  K. Bush,et al.  Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella pneumoniae , 2008, Antimicrobial Agents and Chemotherapy.

[130]  T. Planche,et al.  Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. , 2012, The Journal of hospital infection.

[131]  S. Solomon,et al.  Antibiotic resistance threats in the United States: stepping back from the brink. , 2014, American family physician.

[132]  C. O'callaghan Irreversible Effects of Serum Proteins on Beta-Lactam Antibiotics , 1978, Antimicrobial Agents and Chemotherapy.

[133]  E. Abraham,et al.  Isolation of cephalosporin C, a penicillin-like antibiotic containing d-α-aminoadipic acid , 1956 .

[134]  G. Cerqueira,et al.  Identification of 50 Class D β-Lactamases and 65 Acinetobacter-Derived Cephalosporinases in Acinetobacter spp , 2013, Antimicrobial Agents and Chemotherapy.

[135]  Samy O Meroueh,et al.  Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. , 2003, Journal of the American Chemical Society.

[136]  I. Massova,et al.  Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[137]  C. Urban,et al.  Interaction of sulbactam, clavulanic acid and tazobactam with penicillin-binding proteins of imipenem-resistant and -susceptible acinetobacter baumannii , 1995 .

[138]  Hannah R. Meredith,et al.  Persistence and reversal of plasmid-mediated antibiotic resistance , 2017, Nature Communications.

[139]  Andrew C. Pawlowski,et al.  Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome , 2012, PloS one.

[140]  K. Bush,et al.  β-Lactams and β-Lactamase Inhibitors: An Overview. , 2016, Cold Spring Harbor perspectives in medicine.

[141]  K. Bush,et al.  Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. , 2011, Annual review of microbiology.

[142]  D. Spelman,et al.  Large Outbreak of Infection and Colonization with Gram-Negative Pathogens Carrying the Metallo-β-Lactamase Gene bla IMP-4 at a 320-Bed Tertiary Hospital in Australia , 2007, Infection Control & Hospital Epidemiology.

[143]  T. Peto,et al.  The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections—A Systematic Review of the Literature , 2017, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[144]  H. Narchi Kluyvera urinary tract infection: case report and review of the literature. , 2005, The Pediatric infectious disease journal.

[145]  Andrew C. Pawlowski,et al.  The Comprehensive Antibiotic Resistance Database , 2013, Antimicrobial Agents and Chemotherapy.

[146]  Pascal Retailleau,et al.  Beta-lactamase database (BLDB) – structure and function , 2017, Journal of enzyme inhibition and medicinal chemistry.

[147]  S Falkow,et al.  Molecular characterization of two beta-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae , 1977, Journal of bacteriology.

[148]  M. Tóth,et al.  Class D β-Lactamases: Are They All Carbapenemases? , 2014, Antimicrobial Agents and Chemotherapy.

[149]  S. Mitsuhashi,et al.  Transferable imipenem resistance in Pseudomonas aeruginosa , 1991, Antimicrobial Agents and Chemotherapy.

[150]  Ronald N. Jones,et al.  Outcomes evaluation of patients with ESBL- and non-ESBL-producing Escherichia coli and Klebsiella species as defined by CLSI reference methods: report from the SENTRY Antimicrobial Surveillance Program. , 2006, Diagnostic microbiology and infectious disease.

[151]  G. Jacoby,et al.  Updated Functional Classification of β-Lactamases , 2009, Antimicrobial Agents and Chemotherapy.

[152]  Quan Hao,et al.  Crystal structure of NDM‐1 reveals a common β‐lactam hydrolysis mechanism , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[153]  D. Livermore,et al.  Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates , 1990, Antimicrobial Agents and Chemotherapy.

[154]  A. Medeiros,et al.  Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. , 1997, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[155]  Stefan Schwarz,et al.  Resistance gene naming and numbering: is it a new gene or not? , 2016, The Journal of antimicrobial chemotherapy.

[156]  A. Mathers Mobilization of Carbapenemase-Mediated Resistance in Enterobacteriaceae. , 2016, Microbiology spectrum.

[157]  D. Livermore,et al.  Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. , 2011, The Lancet. Infectious diseases.

[158]  A. Girard,et al.  In vitro activity of the β-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases , 2009, The Journal of antimicrobial chemotherapy.

[159]  T. Palzkill Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases , 2018, Front. Mol. Biosci..

[160]  N. Datta,et al.  Penicillinase Synthesis Controlled By Infectious R Factors In Enterobacteriaceae , 1965, Nature.

[161]  Arzucan Özgür,et al.  Classification of Beta-Lactamases and Penicillin Binding Proteins Using Ligand-Centric Network Models , 2015, PloS one.

[162]  Timothy R. Walsh,et al.  Characterization of a New Metallo-β-Lactamase Gene, blaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India , 2009, Antimicrobial Agents and Chemotherapy.

[163]  P. Nordmann,et al.  Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance , 2015, Antimicrobial Agents and Chemotherapy.

[164]  K. Bush Carbapenemases: Partners in crime. , 2013, Journal of global antimicrobial resistance.

[165]  A. Shapiro,et al.  Continuous fluorescence anisotropy-based assay of BOCILLIN FL penicillin reaction with penicillin binding protein 3. , 2013, Analytical biochemistry.

[166]  P. Nordmann,et al.  In vitro evaluation of dual carbapenem combinations against carbapenemase-producing Enterobacteriaceae. , 2016, The Journal of antimicrobial chemotherapy.

[167]  J. Frère,et al.  Occurrence of a serine residue in the penicillin‐binding site of the exocellular DD‐carboxy‐peptidase‐transpeptidase from Streptomyces R61 , 1976, FEBS letters.

[168]  G. Jacoby,et al.  A functional classification scheme for beta-lactamases and its correlation with molecular structure , 1995, Antimicrobial agents and chemotherapy.

[169]  M. Grütter,et al.  The Cysteine-rich Protein A from Helicobacter pyloriIs a β-Lactamase* , 2000, The Journal of Biological Chemistry.

[170]  R. Sykes,et al.  The β-Lactamases of Gram-Negative Bacteria and their Possible Physiological Role , 1973 .

[171]  J. Wu,et al.  Metallo‐β‐lactamase‐producing Enterobacteriaceae isolates at a Taiwanese hospital: lack of distinctive phenotypes for screening , 2011, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[172]  K. Bush,et al.  Resistance caused by decreased penetration of beta-lactam antibiotics into Enterobacter cloacae , 1985, Antimicrobial Agents and Chemotherapy.

[173]  R. Humphries,et al.  Selection of hyperproduction of AmpC and SME-1 in a carbapenem-resistant Serratia marcescens isolate during antibiotic therapy , 2018, The Journal of antimicrobial chemotherapy.

[174]  M. Gazouli,et al.  Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant , 1997, Antimicrobial agents and chemotherapy.

[175]  E. Moxon Darwin, microbes and evolution by natural selection. , 2011, Advances in experimental medicine and biology.

[176]  S. Mitsuhashi,et al.  Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens , 1983, Infection.

[177]  K. Bush,et al.  Carbapenem-Resistant Strain of Klebsiella oxytoca Harboring Carbapenem-Hydrolyzingβ -Lactamase KPC-2 , 2003, Antimicrobial Agents and Chemotherapy.

[178]  A. Medeiros,et al.  AMPICILLIN-RESISTANT HÆMOPHILUS INFLUENZÆ TYPE B POSSESSING A TEM-TYPE β-LACTAMASE BUT LITTLE PERMEABILITY BARRIER TO AMPICILLIN , 1975, The Lancet.

[179]  Kathryn E Holt,et al.  Prediction of antibiotic resistance from antibiotic resistance genes detected in antibiotic-resistant commensal Escherichia coli using PCR or WGS , 2016, The Journal of antimicrobial chemotherapy.

[180]  K. Bush,et al.  Recent developments in beta-lactamase research and their implications for the future. , 1988, Reviews of infectious diseases.

[181]  Y. Ishii,et al.  Nosocomial outbreak of genetically related IMP-1 beta-lactamase-producing Klebsiella pneumoniae in a general hospital in Japan. , 2007, International journal of antimicrobial agents.

[182]  M. Matthew Plasmid-mediated beta-lactamases of Gram-negative bacteria: properties and distribution. , 1979, The Journal of antimicrobial chemotherapy.

[183]  D. Haft,et al.  Comment on: Resistance gene naming and numbering: is it a new gene or not? , 2016, The Journal of antimicrobial chemotherapy.

[184]  P. Nordmann,et al.  Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli , 1993, Antimicrobial Agents and Chemotherapy.

[185]  S. Mobashery,et al.  Three Decades of the Class A β-Lactamase Acyl-Enzyme , 2009 .

[186]  Sergei Vakulenko,et al.  Class D β-lactamases do exist in Gram-positive bacteria , 2015, Nature chemical biology.

[187]  J. Fisher,et al.  Chapter 25. Bacterial Resistance to β-Lactams: The β-Lactamases , 1978 .

[188]  A. Harris,et al.  Identification of beta-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. , 1976, Journal of general microbiology.

[189]  K. Kazmierczak,et al.  In Vitro Activity of Imipenem against Carbapenemase-Positive Enterobacteriaceae Isolates Collected by the SMART Global Surveillance Program from 2008 to 2014 , 2017, Journal of Clinical Microbiology.

[190]  A. Medeiros,et al.  Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics , 1997 .

[191]  A. Bisno,et al.  Methicillin-Resistant Staphylococcus Aureus: Interstate Spread of Nosocomial Infections with Emergence of Gentamicin-Methicillin Resistant Strains , 1980, Infection Control.

[192]  S. Mitsuhashi,et al.  Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia , 1982, Antimicrobial Agents and Chemotherapy.

[193]  S. Mobashery,et al.  β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. , 2016, Cold Spring Harbor perspectives in medicine.

[194]  E. Abraham,et al.  Cephalosporinase and penicillinase activities of a beta-lactamase from Pseudomonas pyocyanea. , 1965, The Biochemical journal.

[195]  A. Shapiro,et al.  Fluorescence anisotropy-based measurement of Pseudomonas aeruginosa penicillin-binding protein 2 transpeptidase inhibitor acylation rate constants. , 2014, Analytical biochemistry.

[196]  C. Desnues,et al.  Exploring divergent antibiotic resistance genes in ancient metagenomes and discovery of a novel beta-lactamase family. , 2016, Environmental microbiology reports.

[197]  Y. Sun,et al.  Kinetics of beta-lactam interactions with penicillin-susceptible and -resistant penicillin-binding protein 2x proteins from Streptococcus pneumoniae. Involvement of acylation and deacylation in beta-lactam resistance. , 2001, The Journal of biological chemistry.

[198]  M. Barber,et al.  Bacteriophage Types in Penicillin-resistant Staphylococcal Infection , 1949, British medical journal.

[199]  Barry G. Hall,et al.  Evolution of the serine β-lactamases: past, present and future , 2004 .

[200]  Y. Chuang,et al.  Antimicrobial Non-Susceptibility of Escherichia coli from Outpatients and Patients Visiting Emergency Rooms in Taiwan , 2015, PloS one.

[201]  M. Castanheira,et al.  Antimicrobial Activities of Aztreonam-Avibactam and Comparator Agents against Contemporary (2016) Clinical Enterobacteriaceae Isolates , 2017, Antimicrobial Agents and Chemotherapy.

[202]  Y. Carmeli,et al.  Emergence of KPC-2 and KPC-3 in Carbapenem-Resistant Klebsiella pneumoniae Strains in an Israeli Hospital , 2007, Antimicrobial Agents and Chemotherapy.

[203]  B. Kreiswirth,et al.  Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant Klebsiella pneumoniae Bacteremia , 2017, Antimicrobial Agents and Chemotherapy.

[204]  D. Hansman,et al.  A RESISTANT PNEUMOCOCCUS , 1967 .

[205]  A. Harris,et al.  Identification of beta-lactamases by analytical isoelectric focusing: correlation with bacterial taxonomy. , 1976, Journal of general microbiology.

[206]  G. Peirano,et al.  Molecular Epidemiology over an 11-Year Period (2000 to 2010) of Extended-Spectrum β-Lactamase-Producing Escherichia coli Causing Bacteremia in a Centralized Canadian Region , 2011, Journal of Clinical Microbiology.

[207]  A. Witney,et al.  High-Resolution Analysis by Whole-Genome Sequencing of an International Lineage (Sequence Type 111) of Pseudomonas aeruginosa Associated with Metallo-Carbapenemases in the United Kingdom , 2015, Journal of Clinical Microbiology.

[208]  J. Barnes Penicillin and B-anthracis. , 1947, The Journal of pathology and bacteriology.

[209]  K. Bush,et al.  Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein , 1997, Antimicrobial agents and chemotherapy.

[210]  George A. Jacoby,et al.  AmpC β-Lactamases , 2009, Clinical Microbiology Reviews.

[211]  J. Pitton Mechanisms of bacterial resistance to antibiotics. , 1972, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[212]  M. Castanheira,et al.  Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae , 2017, Antimicrobial Agents and Chemotherapy.

[213]  P. Nordmann,et al.  In Vitro Prediction of the Evolution of GES-1 β-Lactamase Hydrolytic Activity , 2015, Antimicrobial Agents and Chemotherapy.

[214]  R. Bonomo,et al.  Molecular analysis of the integrons of metallo-β-lactamase-producing Pseudomonas aeruginosa isolates collected by nationwide surveillance programs across Japan , 2015, BMC Microbiology.

[215]  R. Sykes,et al.  The -lactamases of Gram-negative bacteria and their rle in resistance to -lactam antibiotics , 1976 .

[216]  J. Powers Antimicrobial drug development--the past, the present, and the future. , 2004, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[217]  Pitton Js Mechanisms of bacterial resistance to antibiotics. , 1972, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[218]  H. Nikaido,et al.  Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum beta-lactams , 1985, Antimicrobial Agents and Chemotherapy.

[219]  B. Kreiswirth,et al.  Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections , 2016, Antimicrobial Agents and Chemotherapy.

[220]  L. Gutmann,et al.  Emergence of clinical isolates of Escherichia coli producing TEM-1 derivatives or an OXA-1 beta-lactamase conferring resistance to beta-lactamase inhibitors , 1994, Antimicrobial Agents and Chemotherapy.

[221]  M. Kaufmann,et al.  Identification of Acinetobacter baumannii by Detection of the blaOXA-51-like Carbapenemase Gene Intrinsic to This Species , 2006, Journal of Clinical Microbiology.

[222]  R. Bonomo,et al.  Unexpected Challenges in Treating Multidrug-Resistant Gram-Negative Bacteria: Resistance to Ceftazidime-Avibactam in Archived Isolates of Pseudomonas aeruginosa , 2014, Antimicrobial Agents and Chemotherapy.

[223]  K. Bush Proliferation and significance of clinically relevant β‐lactamases , 2013, Annals of the New York Academy of Sciences.

[224]  M. Pollock PURIFICATION AND PROPERTIES OF PENICILLINASES FROM TWO STRAINS OF BACILLUS LICHENIFORMIS: A CHEMICAL, PHYSICOCHEMICAL AND PHYSIOLOGICAL COMPARISON. , 1965, The Biochemical journal.

[225]  T. Grundström,et al.  ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[226]  I. Boutiba-Ben Boubaker,et al.  Penicillin-Binding Protein 5 Sequence Alteration and Levels of plp5 mRNA Expression in Clinical Isolates of Enterococcus faecium with Different Levels of Ampicillin Resistance. , 2016, Microbial drug resistance.

[227]  K. Kazmierczak,et al.  Global Dissemination of blaKPC into Bacterial Species beyond Klebsiella pneumoniae and In Vitro Susceptibility to Ceftazidime-Avibactam and Aztreonam-Avibactam , 2016, Antimicrobial Agents and Chemotherapy.

[228]  K S Meyer,et al.  Nosocomial Outbreak of Klebsiella Infection Resistant to Late-Generation Cephalosporins , 1993, Annals of Internal Medicine.

[229]  J. Rodríguez-Baño,et al.  Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-β-lactamase-producing Klebsiella oxytoca. , 2013, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[230]  G. Rossolini,et al.  High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. , 2004, The Journal of infectious diseases.

[231]  N. Datta,et al.  The purification and properties of a penicillinase whose synthesis is mediated by an R-factor in Escherichia coli. , 1966, The Biochemical journal.

[232]  A. Saz,et al.  Haemophilus influenzae Type B Resistant to Ampicillin: A Report of Two Cases , 1974 .

[233]  P. Slama,et al.  A Structure-Based Classification of Class A β-Lactamases, a Broadly Diverse Family of Enzymes , 2015, Clinical Microbiology Reviews.