A Modeling Method of Electromagnetic Micromirror in Random Noisy Environment

In this paper, a data-driven modeling method for electromagnetically actuated micromirror in random noisy environment is proposed. In this method, the electromagnetic micromirror is considered as a dynamic system with preceded hysteresis. Then, a linear dynamic submodel is used to describe the angular deflection mechanism, while a preceded rate-dependent hysteresis submodel is used to depict the hysteresis phenomenon inherent in the electromagnetic driver. By considering the influence of random noise on the micromirror, an on-line modeling scheme with varying weighting factors is studied to handle the data contaminated by random noises. Subsequently, the convergence of proposed modeling method is analyzed. Finally, the experimental results of the proposed modeling scheme for an electromagnetically actuated micromirror are presented.

[1]  D. Peale,et al.  Electrostatic actuation of three-dimensional MEMS mirrors using sidewall electrodes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  JinHyoung Oh,et al.  Identification of rate-dependent hysteresis using the semilinear Duhem model , 2004, Proceedings of the 2004 American Control Conference.

[3]  Chao Fan,et al.  Micromirror based virtual image automotive head-up display , 2017 .

[4]  Mark David Bedillion,et al.  Performance-optimized design of electromagnetic micro-actuator for Probe recording storage device , 2014 .

[5]  Klaus Janschek,et al.  Recursive Identification of Micropositioning Stage Based on Sandwich Model With Hysteresis , 2017, IEEE Transactions on Control Systems Technology.

[6]  Xingguo Xiong,et al.  Design and Optimization of Piezoelectric Dual-Mode Micro-Mirror , 2010 .

[7]  Hiroshi Goto,et al.  The 2-dimensional micro scanner integrated with PZT thin film actuator , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[8]  John T.W. Yeow,et al.  Second-order sliding mode control of a 2D torsional MEMS micromirror with sidewall electrodes , 2013 .

[9]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .

[10]  Seung-Yop Lee,et al.  A Two-Dimensional Laser Scanning Mirror Using Motion-Decoupling Electromagnetic Actuators , 2013, Sensors.

[11]  Frank L. Lewis,et al.  Control issues for microelectromechanical systems , 2006 .

[12]  G. Wittum,et al.  Adaptive filtering , 1997 .

[13]  Shuai Guo,et al.  An electromagnetically-driven MEMS micromirror for laser projection , 2015, 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[14]  Beth L. Pruitt,et al.  Piezoresistor design and applications , 2013 .

[15]  Sangtak Park,et al.  Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator , 2017, Sensors.

[16]  Xinkai Chen,et al.  Adaptive Control for Ionic Polymer-Metal Composite Actuators , 2016, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[17]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[18]  Yonghong Tan,et al.  Nonlinear Modeling and Decoupling Control of XY Micropositioning Stages With Piezoelectric Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[19]  A. Yalçinkaya,et al.  Two-axis electromagnetic microscanner for high resolution displays , 2006, Journal of Microelectromechanical Systems.

[20]  John T. W. Yeow,et al.  Experimental validation of Nussbaum gain adaptive control for a polymer composite based electromagnetic micromirror , 2017, 2017 36th Chinese Control Conference (CCC).

[21]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[22]  Hui Chen,et al.  Identification of Hysteresis in Human Meridian Systems Based on NARMAX Model , 2012, J. Appl. Math..

[23]  M. Bontayeb Identification of nonlinear systems in the presence of unknown but bounded disturbances , 2000, IEEE Trans. Autom. Control..

[24]  Mohanraj.,et al.  3D free space thermally actuated micromirror device , 2005 .

[25]  Yonghong Tan,et al.  Recursive identification for dynamic systems with backlash , 2009 .

[26]  Chun-Yi Su,et al.  FNN Approximation-Based Active Dynamic Surface Control for Suppressing Chatter in Micro-Milling With Piezo-Actuators , 2017, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[27]  Yonghong Tan,et al.  Identification of micropositioning stage with piezoelectric actuators , 2016 .

[28]  H. Urey,et al.  Dynamic Modeling of Soft Magnetic Film Actuated Scanners , 2009, IEEE Transactions on Magnetics.

[29]  W. Marsden I and J , 2012 .

[30]  Klaus Janschek,et al.  Flatness-based open-loop and closed-loop control for electrostatic quasi-static microscanners using jerk-limited trajectory design , 2017, Mechatronics.

[31]  John T. W. Yeow,et al.  Dynamic modeling of a polymer composite based hard-magnetic micro-mirror , 2015, 2015 34th Chinese Control Conference (CCC).

[32]  John T. W. Yeow,et al.  Angle tracking of MEMS hard-magnetic micromirror by PID control , 2015, 2015 34th Chinese Control Conference (CCC).

[33]  Qiao Chen,et al.  An electromagnetically actuated micromirror with precise angle control for harsh environment optical switching applications , 2014 .

[34]  M. L. Hodgdon,et al.  Mathematical theory and calculations of magnetic hysteresis curves , 1988 .

[35]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[36]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[37]  Kazuhiro Hane,et al.  Piezoresistive Rotation Angle Sensor in Micromirror for Feedback Control , 2010 .

[38]  Hiroshi Miyajima,et al.  A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope , 2003 .

[39]  John A. Williams,et al.  Friction and wear of rotating pivots in MEMS and other small scale devices , 2001 .

[40]  Joseph J. Talghader Thermal and mechanical phenomena in micromechanical optics , 2004 .

[41]  Zhen Zhang,et al.  Precision tracking control of piezoelectric actuator based on bouc-wen hysteresis compensator , 2012 .

[42]  Bayu Jayawardhana,et al.  Stability of systems with the Duhem hysteresis operator: The dissipativity approach , 2012, Autom..

[43]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[44]  John T. W. Yeow,et al.  Internal Model-Based Robust Tracking Control Design for the MEMS Electromagnetic Micromirror , 2017, Sensors.