Multi-type Resource Allocation with Partial Preferences

We propose multi-type probabilistic serial (MPS) and multi-type random priority (MRP) as extensions of the well known PS and RP mechanisms to the multi-type resource allocation problem (MTRA) with partial preferences. In our setting, there are multiple types of divisible items, and a group of agents who have partial order preferences over bundles consisting of one item of each type. We show that for the unrestricted domain of partial order preferences, no mechanism satisfies both sd-efficiency and sd-envy-freeness. Notwithstanding this impossibility result, our main message is positive: When agents' preferences are represented by acyclic CP-nets, MPS satisfies sd-efficiency, sd-envy-freeness, ordinal fairness, and upper invariance, while MRP satisfies ex-post-efficiency, sd-strategy-proofness, and upper invariance, recovering the properties of PS and RP.

[1]  Daniel Monte,et al.  Centralized allocation in multiple markets , 2015 .

[2]  Sujoy Sikdar,et al.  Top-Trading-Cycles Mechanisms with Acceptable Bundles , 2017 .

[3]  Steven J. Brams,et al.  Fair division - from cake-cutting to dispute resolution , 1998 .

[4]  Sibel Adali,et al.  Mechanism Design for Multi-Type Housing Markets , 2016, AAAI.

[5]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[6]  S. Brams,et al.  Better Ways to Cut a Cake , 2006 .

[7]  Lirong Xia,et al.  Voting in Combinatorial Domains , 2016, Handbook of Computational Social Choice.

[8]  Ariel D. Procaccia,et al.  Cake cutting: not just child's play , 2013, CACM.

[9]  Mischa Schwartz,et al.  ACM SIGCOMM computer communication review , 2001, CCRV.

[10]  Jérôme Lang,et al.  Vote and Aggregation in Combinatorial Domains with Structured Preferences , 2007, IJCAI.

[11]  Hervé Moulin,et al.  A New Solution to the Random Assignment Problem , 2001, J. Econ. Theory.

[12]  Oriol Carbonell-Nicolau Games and Economic Behavior , 2011 .

[13]  M. Utku Ünver,et al.  Two axiomatic approaches to the probabilistic serial mechanism , 2014 .

[14]  Ronen I. Brafman,et al.  Preference‐Based Constrained Optimization with CP‐Nets , 2004, Comput. Intell..

[15]  Eun Jeong Heo,et al.  Probabilistic Assignment of Objects: Characterizing the Serial Rule , 2011, J. Econ. Theory.

[16]  Eun Jeong Heo Probabilistic assignment problem with multi-unit demands: A generalization of the serial rule and its characterization , 2014 .

[17]  Yann Chevaleyre,et al.  Issues in Multiagent Resource Allocation , 2006, Informatica.

[18]  Atila Abdulkadiroglu,et al.  RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .

[19]  H. Moulin Cooperative Microeconomics: A Game-Theoretic Introduction , 1995 .

[20]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[21]  Craig Boutilier,et al.  CP-nets: a tool for represent-ing and reasoning with conditional ceteris paribus state-ments , 2004 .

[22]  Ulrich Endriss,et al.  Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods , 2010, ECAI.

[23]  Kate Larson,et al.  Multiple Assignment Problems under Lexicographic Preferences , 2019, AAMAS.

[24]  Toby Walsh,et al.  mCP Nets: Representing and Reasoning with Preferences of Multiple Agents , 2004, AAAI.

[25]  Makoto Yokoo,et al.  A Complexity Approach for Core-Selecting Exchange with Multiple Indivisible Goods under Lexicographic Preferences , 2015, AAAI.

[26]  Jay Sethuraman,et al.  House allocation with fractional endowments , 2011, Int. J. Game Theory.

[27]  L. Shapley,et al.  On cores and indivisibility , 1974 .

[28]  Özgür Yilmaz,et al.  Random assignment under weak preferences , 2009, Games Econ. Behav..

[29]  Erel Segal-Halevi,et al.  Efficient Fair Division with Minimal Sharing , 2019 .

[30]  Anna Bogomolnaia,et al.  Random assignment: Redefining the serial rule , 2015, J. Econ. Theory.

[31]  Jay Sethuraman,et al.  A solution to the random assignment problem on the full preference domain , 2006, J. Econ. Theory.

[32]  Benjamin Hindman,et al.  Dominant Resource Fairness: Fair Allocation of Multiple Resource Types , 2011, NSDI.

[33]  Christian Borgelt,et al.  Computational Intelligence , 2016, Texts in Computer Science.

[34]  Lirong Xia,et al.  Allocating Indivisible Items in Categorized Domains , 2015, IJCAI.

[35]  John William Hatfield,et al.  Strategy-proof, efficient, and nonbossy quota allocations , 2009, Soc. Choice Welf..

[36]  Toby Walsh,et al.  Fair assignment of indivisible objects under ordinal preferences , 2013, AAMAS.

[37]  Samuel Kaski,et al.  Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) , 2016, IJCAI 2016.

[38]  S. Berg Local justice. How institutions allocate scarce goods and necessary burdens , 1993 .

[39]  S. Weintraub,et al.  Theoretical Economics , 1964 .

[40]  Eun Jeong Heo,et al.  A characterization of the extended serial correspondence , 2015 .

[41]  Erel Segal-Halevi,et al.  Fair Division with Minimal Sharing , 2019, ArXiv.

[42]  J. Sethuraman,et al.  A note on object allocation under lexicographic preferences , 2014 .