Approximate representations for multi-robot control policies that maximize mutual information

We address the problem of controlling a small team of robots to estimate the location of a mobile target using non-linear range-only sensors. Our control law maximizes the mutual information between the team’s estimate and future measurements over a finite time horizon. Because the computations associated with such policies scale poorly with the number of robots, the time horizon associated with the policy, and typical non-parametric representations of the belief, we design approximate representations that enable real-time operation. The main contributions of this paper include the control policy, an algorithm for approximating the belief state, and an extensive study of the performance of these algorithms using simulations and real world experiments in complex, indoor environments.

[1]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[2]  D. Owen A table of normal integrals , 1980 .

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Frank P. Ferrie,et al.  Autonomous Exploration: Driven by Uncertainty , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[7]  Ben Grocholsky,et al.  Information-Theoretic Control of Multiple Sensor Platforms , 2002 .

[8]  S. Shankar Sastry,et al.  Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation , 2002, IEEE Trans. Robotics Autom..

[9]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[10]  Andreas Krause,et al.  Near-optimal Nonmyopic Value of Information in Graphical Models , 2005, UAI.

[11]  A.R. Runnalls,et al.  A Kullback-Leibler Approach to Gaussian Mixture Reduction , 2007 .

[12]  Hugh F. Durrant-Whyte,et al.  On entropy approximation for Gaussian mixture random vectors , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[13]  Uwe D. Hanebeck,et al.  Progressive Gaussian mixture reduction , 2008, 2008 11th International Conference on Information Fusion.

[14]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[15]  Vijay Kumar,et al.  Control for Localization of Targets using Range-only Sensors , 2009, Int. J. Robotics Res..

[16]  Seth J. Teller,et al.  Growing an organic indoor location system , 2010, MobiSys '10.

[17]  J. Karl Hedrick,et al.  Particle filter based information-theoretic active sensing , 2010, Robotics Auton. Syst..

[18]  Claire J. Tomlin,et al.  Mobile Sensor Network Control Using Mutual Information Methods and Particle Filters , 2010, IEEE Transactions on Automatic Control.

[19]  Mac Schwager,et al.  A scalable information theoretic approach to distributed robot coordination , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Éric Marchand,et al.  Mutual Information-Based Visual Servoing , 2011, IEEE Transactions on Robotics.

[21]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[22]  Geoffrey A. Hollinger,et al.  Search and pursuit-evasion in mobile robotics , 2011, Auton. Robots.

[23]  Jorge F. Silva,et al.  Sufficient conditions for the convergence of the Shannon differential entropy , 2011, 2011 IEEE Information Theory Workshop.

[24]  Geoffrey A. Hollinger,et al.  Target tracking without line of sight using range from radio , 2012, Auton. Robots.

[25]  Robert Fitch,et al.  Decentralised information gathering with communication costs , 2012, 2012 IEEE International Conference on Robotics and Automation.

[26]  Sanjiv Singh,et al.  Motion-aided network SLAM with range , 2012, Int. J. Robotics Res..

[27]  Vijay Kumar,et al.  Approximate representations for multi-robot control policies that maximize mutual information , 2013, Autonomous Robots.

[28]  Gaurav S. Sukhatme,et al.  Optimizing waypoints for monitoring spatiotemporal phenomena , 2013, Int. J. Robotics Res..

[29]  Geoffrey A. Hollinger,et al.  Sampling-based Motion Planning for Robotic Information Gathering , 2013, Robotics: Science and Systems.

[30]  Vijay Kumar,et al.  Cooperative multi-robot estimation and control for radio source localization , 2014, ISER.