Many-objective de Novo water supply portfolio planning under deep uncertainty

This paper proposes and demonstrates a new interactive framework for sensitivity-informed de Novo planning to confront the deep uncertainty within water management problems. The framework couples global sensitivity analysis using Sobol' variance decomposition with multiobjective evolutionary algorithms (MOEAs) to generate planning alternatives and test their robustness to new modeling assumptions and scenarios. We explore these issues within the context of a risk-based water supply management problem, where a city seeks the most efficient use of a water market. The case study examines a single city's water supply in the Lower Rio Grande Valley (LRGV) in Texas, using a suite of 6-objective problem formulations that have increasing decision complexity for both a 10-year planning horizon and an extreme single-year drought scenario. The de Novo planning framework demonstrated illustrates how to adaptively improve the value and robustness of our problem formulations by evolving our definition of optimality while discovering key tradeoffs.

[1]  P. Reed,et al.  Hydrology and Earth System Sciences Discussions Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation , 2022 .

[2]  P. Reed,et al.  A computational scaling analysis of multiobjective evolutionary algorithms in long-term groundwater monitoring applications , 2007 .

[3]  A. V. Lotov,et al.  Visualization of Pareto Frontier in Environmental Decision Making , 2007 .

[4]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[5]  N. Arnell,et al.  Freshwater resources and their management , 2007 .

[6]  C. Vörösmarty,et al.  Global water resources: vulnerability from climate change and population growth. , 2000, Science.

[7]  Carl Tim Kelley,et al.  More efficient optimization of long‐term water supply portfolios , 2009 .

[8]  Patrick M. Reed,et al.  Striking the Balance: Long-Term Groundwater Monitoring Design for Conflicting Objectives , 2004 .

[9]  Jon C. Liebman,et al.  Some Simple-Minded Observations on the Role of Optimization in Public Systems Decision-Making , 1976 .

[10]  Jochen Runde,et al.  Clarifying Frank Knight's discussion of the meaning of risk and uncertainty , 1998 .

[11]  Giuseppe Mancini,et al.  Intelligent Decision Support in Process Environments , 1986, NATO ASI Series.

[12]  Daniel P. Loucks,et al.  Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation , 1982 .

[13]  Andrea Castelletti,et al.  A procedural approach to strengthening integration and participation in water resource planning , 2006, Environ. Model. Softw..

[14]  George Kuczera,et al.  Incorporating demand uncertainty in water supply headworks simulation , 1993 .

[15]  Stephen F. LeRoy,et al.  Knight on Risk and Uncertainty , 1987, Journal of Political Economy.

[16]  Timothy W. Simpson,et al.  Design Space Visualization and Its Application to a Design by Shopping Paradigm , 2003, DAC 2003.

[17]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[18]  Robert J Lempert,et al.  A new decision sciences for complex systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jay R. Lund,et al.  Recent California Water Transfers: Implications For Water Management , 1995 .

[20]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[21]  Gregory W. Characklis,et al.  Improving the ability of a water market to efficiently manage drought , 1999 .

[22]  Milan Zeleny On the Squandering of Resources and Profits via Linear Programming , 1981 .

[23]  James J. Thomas,et al.  Challenges for Visual Analytics , 2009, Inf. Vis..

[24]  Euan Fleming,et al.  Structuring Exotic Options Contracts on Water to Improve the Efficiency of Resource Allocation in the Water Spot Market , 2008 .

[25]  B. Roy Decision-aid and decision-making , 1990 .

[26]  Ereney Hadjigeorgalis,et al.  Managing Drought Through Water Markets: Farmer Preferences in the Rio Grande Basin 1 , 2008 .

[27]  Andrea Castelletti,et al.  Visualization-based multi-objective improvement of environmental decision-making using linearization of response surfaces , 2010, Environ. Model. Softw..

[28]  Yong Tang,et al.  Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications , 2007 .

[29]  Daniel A. Keim,et al.  Challenges in Visual Data Analysis , 2006, Tenth International Conference on Information Visualisation (IV'06).

[30]  Mark Rounsevell,et al.  Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[31]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[32]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[33]  F. Andrew Schoolmaster,et al.  WATER MARKETING AND WATER RIGHTS TRANSFERS IN THE LOWER RIO GRANDE VALLEY, TEXAS∗ , 1991 .

[34]  David G. Groves,et al.  A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios , 2006, Manag. Sci..

[35]  I. Sobol,et al.  Sensitivity Measures, ANOVA-like Techniques and the Use of Bootstrap , 1997 .

[36]  Patrick M. Reed,et al.  Using interactive archives in evolutionary multiobjective optimization: A case study for long-term groundwater monitoring design , 2007, Environ. Model. Softw..

[37]  James J. Thomas,et al.  Defining Insight for Visual Analytics , 2009, IEEE Computer Graphics and Applications.

[38]  Gregory E. Schwarz,et al.  Socioeconomic impacts of climate change on U.S. water supplies , 1999 .

[39]  Joseph A. C. Delaney Sensitivity analysis , 2018, The African Continental Free Trade Area: Economic and Distributional Effects.

[40]  D D Woods,et al.  Paradigms for intelligent decision support , 1986 .

[41]  Carl Tim Kelley,et al.  Developing portfolios of water supply transfers , 2005 .

[42]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[43]  Patrick M. Reed,et al.  How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration , 2005 .

[44]  H. Fowler,et al.  Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system , 2003 .

[45]  R. Hogarth Beyond discrete biases: Functional and dysfunctional aspects of judgmental heuristics. , 1981 .

[46]  R. Stouffer,et al.  Stationarity Is Dead: Whither Water Management? , 2008, Science.

[47]  Avi Ostfeld,et al.  State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management , 2010 .

[48]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[49]  Peter J. Fleming,et al.  Many-Objective Optimization: An Engineering Design Perspective , 2005, EMO.

[50]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[51]  Milan Zeleny,et al.  Cognitive Equilibirum: A New Paradigm of Decision Making? , 1989 .

[52]  S. Ranji Ranjithan,et al.  GENETIC ALGORITHM APPROACHES FOR ADDRESSING UNMODELED OBJECTIVES IN OPTIMIZATION PROBLEMS , 2001 .

[53]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[54]  Terry L. Anderson,et al.  Water Marketing: The Next Generation , 1996 .

[55]  A. Saltelli,et al.  Sensitivity Anaysis as an Ingredient of Modeling , 2000 .

[56]  Patrick M. Reed,et al.  A framework for Visually Interactive Decision-making and Design using Evolutionary Multi-objective Optimization (VIDEO) , 2007, Environ. Model. Softw..

[57]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[58]  Stefano Tarantola,et al.  Sensitivity Analysis as an Ingredient of Modeling , 2000 .

[59]  Richard M. Vogel,et al.  Indicators of Impacts of Global Climate Change on U.S. Water Resources , 1999 .

[60]  Bernard Roy,et al.  Decision-Aiding Today: What Should We Expect? , 1999 .

[61]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[62]  Abraham M. Hasofer,et al.  Modern sensitivity analysis of the CESARE-Risk computer fire model , 2009 .

[63]  Patrick M. Reed,et al.  The Value of Online Adaptive Search: A Performance Comparison of NSGAII, epsilon-NSGAII and epsilonMOEA , 2005, EMO.

[64]  Patrick M. Reed,et al.  A Framework for Visually Interactive Decision-Making and Design Using Evolutionary Multiobjective Optimization (VIDEO) , 2007 .

[65]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[66]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[67]  T. Gal,et al.  Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications , 2012 .

[68]  C. Gettys,et al.  Hypothesis plausibility and hypothesis generation , 1979 .

[69]  P. Reed,et al.  Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models , 2009 .

[70]  Sharon Gifford,et al.  Risk and Uncertainty , 2010 .

[71]  Joseph R. Kasprzyk,et al.  A new epsilon-dominance hierarchical Bayesian optimization algorithm for large multiobjective monitoring network design problems , 2008 .

[72]  Richard N. Langlois,et al.  FRANK KNIGHT ON RISK, UNCERTAINTY, AND THE FIRM: A NEW INTERPRETATION , 1993 .

[73]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[74]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[75]  Patrick M. Reed,et al.  Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design , 2005 .

[76]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[77]  Erik Hollnagel,et al.  Joint Cognitive Systems: Patterns in Cognitive Systems Engineering , 2006 .

[78]  John M. Flach,et al.  MGA: a decision support system for complex, incompletely defined problems , 1990, IEEE Trans. Syst. Man Cybern..

[79]  J. Palutikof,et al.  Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[80]  Alan Harrison,et al.  Assessing reservoir operations risk under climate change , 2009 .

[81]  Milan Zeleny,et al.  The Evolution of Optimality: De Novo Programming , 2005, EMO.

[82]  David G. Groves,et al.  A New Analytic Method for Finding Policy-Relevant Scenarios: , 2007 .

[83]  G. Levine The Lower Rio Grande Valley: a case study of a water market area , 2007, Paddy and Water Environment.

[84]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[85]  Nancy L. Barber,et al.  Estimated use of water in the United States in 2005 , 2009 .

[86]  P. Reed,et al.  Managing population and drought risks using many‐objective water portfolio planning under uncertainty , 2009 .

[87]  A. Michelsen,et al.  Economics of optioning agricultural water rights for urban water supplies during drought , 1993 .

[88]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[89]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..