Conceptual structure: Towards an integrated neurocognitive account

How are the meanings of concepts represented and processed? We present a cognitive model of conceptual representations and processing—the Conceptual Structure Account (CSA; Tyler & Moss, 2001)—as an example of a distributed, feature-based approach. In the first section, we describe the CSA and evaluate relevant neuropsychological and experimental behavioural data. We discuss studies using linguistic and nonlinguistic stimuli, which are both presumed to access the same conceptual system. We then take the CSA as a framework for hypothesising how conceptual knowledge is represented and processed in the brain. This neurocognitive approach attempts to integrate the distributed feature-based characteristics of the CSA with a distributed and feature-based model of sensory object processing. Based on a review of relevant functional imaging and neuropsychological data, we argue that distributed accounts of feature-based representations have considerable explanatory power, and that a cognitive model of conceptual representations is needed to understand their neural bases.

[1]  G. Humphreys,et al.  Hierarchies, similarity, and interactivity in object recognition: “Category-specific” neuropsychological deficits , 2001, Behavioral and Brain Sciences.

[2]  Y. Miyashita,et al.  Formation of mnemonic neuronal responses to visual paired associates in inferotemporal cortex is impaired by perirhinal and entorhinal lesions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Chris McNorgan,et al.  An attractor model of lexical conceptual processing: simulating semantic priming , 1999, Cogn. Sci..

[4]  J. Rodd,et al.  Processing Objects at Different Levels of Specificity , 2004, Journal of Cognitive Neuroscience.

[5]  Joseph T. Devlin,et al.  The emergence of category specific deficits in a distributed semantic system , 2002 .

[6]  A. Caramazza,et al.  Category-specific naming and comprehension impairment: a double dissociation. , 1991, Brain : a journal of neurology.

[7]  T. Shallice,et al.  Category specific semantic impairments , 1984 .

[8]  Mark S. Seidenberg,et al.  On the nature and scope of featural representations of word meaning. , 1997, Journal of experimental psychology. General.

[9]  L. K. Tyler,et al.  Conceptual Structure and the Structure of Concepts: A Distributed Account of Category-Specific Deficits , 2000, Brain and Language.

[10]  Ken McRae,et al.  Category - Specific semantic deficits , 2008 .

[11]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Alex A. Knopman Neural basis of semantic memory , 2008, Acta Neuropsychiatrica.

[13]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[14]  Alfonso Caramazza,et al.  The multiple semantics hypothesis: Multiple confusions? , 1990 .

[15]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[16]  E. Macaluso Multisensory Processing in Sensory-Specific Cortical Areas , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[17]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[18]  Y. Iwamura Hierarchical somatosensory processing , 1998, Current Opinion in Neurobiology.

[19]  J. Hodges,et al.  Generating ‘tiger’ as an animal name or a word beginning with T: differences in brain activation , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[21]  A Caramazza,et al.  Deficits in lexical and semantic processing: Implications for models of normal language , 1999, Psychonomic bulletin & review.

[22]  L. Saksida,et al.  The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex , 2002, The European journal of neuroscience.

[23]  A. Damasio Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition , 1989, Cognition.

[24]  B. Argall,et al.  Integration of Auditory and Visual Information about Objects in Superior Temporal Sulcus , 2004, Neuron.

[25]  Murray Grossman,et al.  The neural basis of semantic memory , 2013 .

[26]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[27]  G. Orban,et al.  Search for color 'center(s)' in macaque visual cortex. , 2004, Cerebral cortex.

[28]  L. Tyler,et al.  Functional Properties of Concepts: Studies of Normal and Brain-damaged Patients , 1997 .

[29]  T. Poggio,et al.  Neural mechanisms of object recognition , 2002, Current Opinion in Neurobiology.

[30]  C. Koch,et al.  Imagery neurons in the human brain , 2000, Nature.

[31]  Matthew A. Lambon Ralph,et al.  Are living and non-living category-specific deficits causally linked to impaired perceptual or associative knowledge? evidence from a category-specific double dissociation , 1998 .

[32]  M. Garrett,et al.  Representing the meanings of object and action words: The featural and unitary semantic space hypothesis , 2004, Cognitive Psychology.

[33]  Michael J Cortese,et al.  Handbook of Psycholinguistics , 2011 .

[34]  Thierry Poibeau,et al.  Towards Unrestricted, Large-Scale Acquisition of Feature-Based Conceptual Representations from Corpus Data , 2009 .

[35]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[36]  Lawrence W. Barsalou,et al.  Perceptual simulation in conceptual tasks , 1999 .

[37]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[38]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Shallice,et al.  Deep Dyslexia: A Case Study of , 1993 .

[40]  David P Vinson,et al.  Semantic feature production norms for a large set of objects and events , 2008, Behavior research methods.

[41]  George S. Cree,et al.  Distinctive features hold a privileged status in the computation of word meaning: Implications for theories of semantic memory. , 2006, Journal of experimental psychology. Learning, memory, and cognition.

[42]  L. Tyler,et al.  Neural Basis of Semantic Memory: The conceptual structure account: A cognitive model of semantic memory and its neural instantiation , 2007 .

[43]  Massimo Poesio,et al.  Concept Learning and Categorization from the Web , 2005 .

[44]  P. Pexman,et al.  Number-of-features effects and semantic processing , 2003, Memory & cognition.

[45]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[46]  Elisabeth Dévière,et al.  Analyzing linguistic data: a practical introduction to statistics using R , 2009 .

[47]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[48]  D. Mirman,et al.  The effect of frequency of shared features on judgments of semantic similarity , 2009, Psychonomic bulletin & review.

[49]  L. Saksida,et al.  Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. , 2007, Annual review of neuroscience.

[50]  Glyn W. Humphreys,et al.  From objects to names: A cognitive neuroscience approach , 1999, Psychological research.

[51]  B. Argall,et al.  Unraveling multisensory integration: patchy organization within human STS multisensory cortex , 2004, Nature Neuroscience.

[52]  M. Masson A distributed memory model of semantic priming. , 1995 .

[53]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[54]  Sergio E. Chaigneau,et al.  THE SIMILARITY-IN-TOPOGRAPHY PRINCIPLE: RECONCILING THEORIES OF CONCEPTUAL DEFICITS , 2003, Cognitive neuropsychology.

[55]  Emer M. E. Forde,et al.  Category specific recognition impairments: a review of important case studies and influential theories , 1999 .

[56]  J. Rodd,et al.  Distinctiveness and correlation in conceptual structure: behavioral and computational studies. , 2004, Journal of experimental psychology. Learning, memory, and cognition.

[57]  Bradford Z. Mahon,et al.  A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content , 2008, Journal of Physiology-Paris.

[58]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[59]  L. Tyler,et al.  Binding crossmodal object features in perirhinal cortex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Richmond,et al.  Role of perirhinal cortex in object perception, memory, and associations , 2001, Current Opinion in Neurobiology.

[61]  A J Parkin,et al.  Naming Impairments following Recovery from Herpes Simplex Encephalitis: Category-Specific? , 1992, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[62]  Mark S. Seidenberg,et al.  Semantic feature production norms for a large set of living and nonliving things , 2005, Behavior research methods.

[63]  Kathleen S Rockland,et al.  Multisensory convergence in calcarine visual areas in macaque monkey. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[64]  Erminio Capitani,et al.  Perceptual and Associative Knowledge in Category Specific Impairment of Semantic Memory: A Study of two Cases , 1993, Cortex.

[65]  T. Bussey,et al.  Perceptual–mnemonic functions of the perirhinal cortex , 1999, Trends in Cognitive Sciences.

[66]  S. Cappa,et al.  The breakdown of semantic knowledge: Insights from a statistical model of meaning representation , 2003, Brain and Language.

[67]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[68]  A. Caramazza,et al.  Domain-Specific Knowledge Systems in the Brain: The Animate-Inanimate Distinction , 1998, Journal of Cognitive Neuroscience.

[69]  George S. Cree,et al.  Factors underlying category-specific semantic deficits , 2001 .

[70]  Guido Gainotti,et al.  What the Locus of Brain Lesion Tells us About the Nature of the Cognitive Defect Underlying Category-Specific Disorders: A Review , 2000, Cortex.

[71]  L. Tyler,et al.  Towards a distributed account of conceptual knowledge , 2001, Trends in Cognitive Sciences.

[72]  L. Tyler,et al.  Conceptual Structure , 2006 .

[73]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[74]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[75]  Keiji Tanaka Mechanisms of visual object recognition: monkey and human studies , 1997, Current Opinion in Neurobiology.

[76]  Lorraine K. Tyler,et al.  Functional properties of concepts: studies of normal and brain-damaged patients , 1997 .

[77]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[78]  Jennifer M. Rodd,et al.  The Emergence of Semantic Categories from Distributed Featural Representations , 2001 .

[79]  Russell A. Epstein,et al.  Perceptual deficits in amnesia: challenging the medial temporal lobe ‘mnemonic’ view , 2005, Neuropsychologia.

[80]  Christine D. Wilson,et al.  Grounding conceptual knowledge in modality-specific systems , 2003, Trends in Cognitive Sciences.

[81]  J. Rauschecker,et al.  Functional Specialization in Rhesus Monkey Auditory Cortex , 2001, Science.

[82]  J. Rodd,et al.  Anteromedial temporal cortex supports fine-grained differentiation among objects. , 2005, Cerebral cortex.

[83]  A. Caramazza,et al.  The organisation of conceptual knowledge in the brain: The future's past and some future directions , 2006, Cognitive neuropsychology.

[84]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[85]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[86]  Richard J. Epstein,et al.  Current perspectives in dysphasia , 1985 .

[87]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[88]  Leslie G. Ungerleider,et al.  Object-form topology in the ventral temporal lobe Response to I. Gauthier (2000) , 2000, Trends in Cognitive Sciences.

[89]  Ichiro Fujita,et al.  Quantitative analysis of functional clustering of neurons in the macaque inferior temporal cortex , 2005, Neuroscience Research.

[90]  Mark S. Seidenberg,et al.  Category-Specific Semantic Deficits in Focal and Widespread Brain Damage: A Computational Account , 1998, Journal of Cognitive Neuroscience.

[91]  J O'tooleAlice,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005 .

[92]  J. Rodd,et al.  Clarifying the Nature of the Distinctiveness by Domain Interaction in Conceptual Structure: Comment on Cree, Mcnorgan, and Mcrae (2006) , 2022 .

[93]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[94]  L. Tyler,et al.  ‘Two Eyes of a See-through’: Impaired and Intact Semantic Knowledge in a Case of Selective Deficit for Living Things , 1998 .

[95]  Bradford Z. Mahon,et al.  Concepts and categories: a cognitive neuropsychological perspective. , 2009, Annual review of psychology.

[96]  E. Warrington,et al.  Categories of knowledge. Further fractionations and an attempted integration. , 1987, Brain : a journal of neurology.

[97]  A. Wierzbicka,et al.  Semantics and cognition. , 2006, Wiley interdisciplinary reviews. Cognitive science.

[98]  Joseph P. Levy,et al.  Distinctiveness and correlations in the structure of categories: Behavioral data and a connectionist model , 1996 .

[99]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[100]  E. Warrington,et al.  Category specific access dysphasia. , 2002, Brain : a journal of neurology.

[101]  E. Murray,et al.  Cross-modal associations, intramodal associations, and object identification in macaque monkeys , 1998 .

[102]  Massimo Poesio,et al.  Strudel: A Corpus-Based Semantic Model Based on Properties and Types , 2010, Cogn. Sci..

[103]  A. Caramazza,et al.  Category-Specific Organization in the Human Brain Does Not Require Visual Experience , 2009, Neuron.

[104]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[105]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[106]  G. Gainotti,et al.  Neuroanatomical correlates of category-specific semantic disorders: a critical survey. , 1995, Memory.

[107]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[108]  L. Chalupa,et al.  Organization of Visual Areas in Macaque and Human Cerebral Cortex , 2002 .

[109]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[110]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  R. Jackendoff Foundations of Language: Brain, Meaning, Grammar, Evolution , 2002 .

[112]  Lorraine K. Tyler,et al.  When leopards lose their spots: knowledge of visual properties in category-specific deficits for living things , 1997 .

[113]  G B Arden,et al.  The Visual System , 2021, AMA Guides to the Evaluation of Permanent Impairment, 6th Edition, 2021.

[114]  Andy C. H. Lee,et al.  Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: Effects of viewpoint , 2009, Hippocampus.

[115]  John Hart,et al.  Neural subsystems for object knowledge , 1992, Nature.

[116]  Ken McRae,et al.  Further evidence for feature correlations in semantic memory. , 1999, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[117]  D. Gaffan,et al.  Lesions of the primate rhinal cortex cause deficits in flavour–visual associative memory , 1998, Behavioural Brain Research.

[118]  Alex Martin,et al.  Semantic memory and the brain: structure and processes , 2001, Current Opinion in Neurobiology.

[119]  James L. McClelland,et al.  Structure and deterioration of semantic memory: a neuropsychological and computational investigation. , 2004, Psychological review.