Analyzing for information, not activation, to exploit high-resolution fMRI

High-resolution functional magnetic resonance imaging (hi-res fMRI) promises to help bridge the gap between the macro- and the microview of brain function afforded by conventional neuroimaging and invasive cell recording, respectively. Hi-res fMRI (voxel volume<or=(2 mm)3 is robustly achievable in human studies today using widely available clinical 3-Tesla scanners. However, the neuroscientific exploitation of the greater spatial detail poses four challenges: (1) Hi-res fMRI may give inaccurate (i.e. blurred, displaced and distorted) images of fine-scale neuronal activity patterns. (2) Single small voxels yield very noisy measurements. (3) The greater number of voxels complicates interpretation and poses a more severe multiple-comparisons problem. (4) The functional correspondency mapping between individual brains is unknown at the fine scale of millimeters. Here we argue that these challenges can be met by shifting the focus of brain mapping and visualizing, not the activity patterns themselves, but the amount of information they convey about the experimental conditions.

[1]  Dinggang Shen,et al.  Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection , 2005, NeuroImage.

[2]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[3]  Janaina Mourão Miranda,et al.  Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data , 2005, NeuroImage.

[4]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[5]  J. Frahm,et al.  Functional MRI of human brain activation at high spatial resolution , 1993, Magnetic resonance in medicine.

[6]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[7]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[8]  Peter A. Bandettini,et al.  From neuron to BOLD: new connections , 2001, Nature Neuroscience.

[9]  Seong-Gi Kim Quantification of relative cerebral blood flow change by flow‐sensitive alternating inversion recovery (FAIR) technique: Application to functional mapping , 1995, Magnetic resonance in medicine.

[10]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[11]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[12]  J. Bodurka,et al.  Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes , 2002 .

[13]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[14]  Karl J. Friston,et al.  A critique of functional localisers , 2006, NeuroImage.

[15]  Essa Yacoub,et al.  Frontiers of brain mapping using MRI , 2006, Journal of magnetic resonance imaging : JMRI.

[16]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[17]  L. Pessoa,et al.  Decoding near-threshold perception of fear from distributed single-trial brain activation. , 2006, Cerebral cortex.

[18]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[19]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[20]  Kevin Murphy,et al.  Mapping the MRI voxel volume in which thermal noise matches physiological noise—Implications for fMRI , 2007, NeuroImage.

[21]  A. Kleinschmidt,et al.  Somatotopy in the Human Motor Cortex Hand Area. A High‐Resolution Functional MRI Study , 1997, The European journal of neuroscience.

[22]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Xavier Golay,et al.  Accelerated parallel imaging for functional imaging of the human brain , 2006, NMR in biomedicine.

[24]  Essa Yacoub,et al.  Zoomed Functional Imaging in the Human Brain at 7 Tesla with Simultaneous High Spatial and High Temporal Resolution , 2002, NeuroImage.

[25]  L. K. Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[26]  Karl J. Friston,et al.  Characterizing the Response of PET and fMRI Data Using Multivariate Linear Models , 1997, NeuroImage.

[27]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[28]  J. S. Barlow The mindful brain: B.M. Edelman and V.B. Mountcastle (MIT Press, Cambridge, Mass., 1978, 100 p., U.S. $ 10.00) , 1979 .

[29]  Dae-Shik Kim,et al.  High-resolution mapping of iso-orientation columns by fMRI , 2000, Nature Neuroscience.

[30]  D. Plenz,et al.  Direct magnetic resonance detection of neuronal electrical activity , 2006, Proceedings of the National Academy of Sciences.

[31]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[32]  K. Wessel,et al.  Somatotopic motor representation in the human anterior cerebellum. A high-resolution functional MRI study. , 1996, Brain : a journal of neurology.

[33]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[34]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[35]  Dae-Shik Kim,et al.  Localized cerebral blood flow response at submillimeter columnar resolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Kevin Murphy,et al.  How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration , 2007, NeuroImage.

[37]  Rainer Goebel,et al.  Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single‐subject to cortically aligned group general linear model analysis and self‐organizing group independent component analysis , 2006, Human brain mapping.

[38]  Essa Yacoub,et al.  Spatio-temporal point-spread function of fMRI signal in human gray matter at 7 Tesla , 2007, NeuroImage.

[39]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[40]  Klaas P Pruessmann,et al.  Parallel Imaging at High Field Strength: Synergies and Joint Potential , 2004, Topics in magnetic resonance imaging : TMRI.

[41]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[42]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[43]  Andreas Kleinschmidt,et al.  Different analysis solutions for different spatial resolutions? Moving towards a mesoscopic mapping of functional architecture in the human brain , 2007, NeuroImage.

[44]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[46]  V. Mountcastle,et al.  An organizing principle for cerebral function : the unit module and the distributed system , 1978 .

[47]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[48]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[49]  Ravi S. Menon,et al.  Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Analysis of FIAC data with BrainVoyager QX : From single subject to cortically aligned group GLM analysis , 2022 .

[51]  Beatriz Luna,et al.  Combining Brains: A Survey of Methods for Statistical Pooling of Information , 2002, NeuroImage.

[52]  Vaidehi S. Natu,et al.  Category-Specific Cortical Activity Precedes Retrieval During Memory Search , 2005, Science.

[53]  K. Uğurbil,et al.  High‐resolution, spin‐echo BOLD, and CBF fMRI at 4 and 7 T , 2002, Magnetic resonance in medicine.

[54]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[55]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[56]  B. Biswal,et al.  High‐resolution fMRI using multislice partial k‐space GR‐EPI with cubic voxels , 2001, Magnetic resonance in medicine.

[57]  A. Kraskov,et al.  Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[59]  D. Dennett The Intentional Stance. , 1987 .

[60]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[61]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003 .

[62]  Ravi S. Menon,et al.  Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI , 2001, Human brain mapping.

[63]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[64]  H Steinmetz,et al.  Correlational Imaging of Thalamocortical Coupling in the Primary Visual Pathway of the Human Brain , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[65]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[66]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[67]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[68]  Lars Kai Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[69]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[70]  David G. Stork,et al.  Pattern Classification , 1973 .

[71]  L. Toth,et al.  How accurate is magnetic resonance imaging of brain function? , 2003, Trends in Neurosciences.

[72]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[73]  Lawrence L. Wald,et al.  Effect of spatial smoothing on physiological noise in high-resolution fMRI , 2006, NeuroImage.

[74]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[75]  J. Bodurka,et al.  Current-induced magnetic resonance phase imaging. , 1999, Journal of magnetic resonance.

[76]  K. Grill-Spector,et al.  High-resolution imaging reveals highly selective nonface clusters in the fusiform face area , 2006, Nature Neuroscience.

[77]  Robert Turner,et al.  How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes , 2002, NeuroImage.

[78]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[79]  B. Argall,et al.  Unraveling multisensory integration: patchy organization within human STS multisensory cortex , 2004, Nature Neuroscience.

[80]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[81]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[82]  Nancy Kanwisher,et al.  Divide and conquer: A defense of functional localizers , 2006, NeuroImage.