Effect of Input Noise on a Magnetometer with Quantum Feedback

This article investigates the effects of input noise on a magnetometer with quantum feedback. Previous research has shown that feedback makes the measurement robust to an unknown parameter, the number of atoms involved, with the assumption that the feedback is noise free. To evaluate the effects of the feedback noise, we extend the original model by an input noise term. We then analyze the steady state performance of the Kalman filter for both the closed-loop and open-loop cases and retrieve the second moment of the estimation error. The results are compared and criteria for evaluating the effects of input noise are obtained. Robust and optimal designs are also discussed. Computations and simulations show how quantitatively the input noise increases the estimation error and changes the region where the closed-loop case behaves better than the open-loop case.

[1]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[2]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[3]  Milburn,et al.  Squeezing via feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[4]  A. Doherty,et al.  Robust quantum parameter estimation: Coherent magnetometry with feedback (16 pages) , 2003, quant-ph/0309101.

[5]  M. S. Zubairy,et al.  Quantum optics: Dedication , 1997 .

[6]  K. Mølmer,et al.  Magnetometry with entangled atomic samples , 2004, quant-ph/0409202.

[7]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[8]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[9]  Stephen A. Maas,et al.  Noise In Linear And Nonlinear Circuits , 2005 .

[10]  Hideo Mabuchi,et al.  Quantum feedback control of atomic motion in an optical cavity. , 2003, Physical Review Letters.

[11]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[12]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[13]  S. Mancini,et al.  Spin squeezing via quantum feedback , 2001 .

[14]  Hideo Mabuchi,et al.  Feedback controller design for tracking a single fluorescent molecule , 2004 .

[15]  Kevin J. McHale,et al.  Bayesian estimation for species identification in single-molecule fluorescence microscopy. , 2004, Biophysical journal.

[16]  Joseph E. Reiner,et al.  Quantum jumps between dressed states: A proposed cavity-QED test using feedback , 2003 .

[17]  Michael J. Grimble,et al.  Optimal Control and Stochastic Estimation: Theory and Applications , 1988 .

[18]  H. M. Wiseman,et al.  Adaptive phase estimation is more accurate than nonadaptive phase estimation for continuous beams of light , 2004 .

[19]  R. Handel,et al.  Deterministic Dicke-state preparation with continuous measurement and control , 2004, quant-ph/0402137.

[20]  Ivan H. Deutsch,et al.  Continuous measurement with traveling-wave probes , 2003 .

[21]  Denmark,et al.  Estimation of a classical parameter with Gaussian probes: Magnetometry with collective atomic spins , 2004 .

[22]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.