PSO based on-line optimization for DC motor speed control

In this paper, an on-line optimization approach based on particle swarm optimization (PSO) for DC motor speed control is proposed. Here, the main idea is to design speed controllers, discovering on-line the gains. In this work both PID controllers and sliding mode controllers (SMC) are considered. The main contributions are the optimization approach based on the minimization of an objective (cost) function based on different indexes including the Harris index, and the on-line serialization of the parallel PSO optimization scheme. In order to show the performance, simulation results with a nonlinear neural model of the Feedback setup with the DC motor 63-110 are presented.

[1]  Ramon Vilanova,et al.  PID Control in the Third Millennium , 2012 .

[2]  Pedro Pereira,et al.  Variability-Aware Optimization of RF Integrated Inductors in Nanometer-Scale Technologies , 2013 .

[3]  Tianyou Chai,et al.  An adaptive chaotic PSO for parameter optimization and feature extraction of LS-SVM based modelling , 2011, Proceedings of the 2011 American Control Conference.

[4]  E. Chong,et al.  Introduction to optimization , 1987 .

[5]  K. Matsumoto,et al.  Development of PSO-based PID tuning method , 2008, 2008 International Conference on Control, Automation and Systems.

[6]  Hamid A. Toliyat,et al.  Handbook of Electric Motors , 2004 .

[7]  Tsung-Ying Sun,et al.  PSO-based on-line tuning PID controller for setpoint changes and load disturbance , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[8]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[9]  L. Brito Palma,et al.  Hybrid approach for control loop performance assessment , 2013 .

[10]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[11]  T. Harris Assessment of Control Loop Performance , 1989 .

[12]  Adriana Serbencu,et al.  Particle swarm optimization for the Sliding Mode controller parameters , 2010, Proceedings of the 29th Chinese Control Conference.

[13]  Eduardo José Solteiro Pires,et al.  Many-Objective PSO PID Controller Tuning , 2015 .

[14]  José Boaventura-Cunha,et al.  Sliding Mode Generalized Predictive Control Based on Dual Optimization , 2015 .

[15]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[16]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[17]  J. Macgregor,et al.  Monitoring and Diagnosing Process Control Performance: The Single-Loop Case , 1991, 1991 American Control Conference.

[18]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[19]  Tore Hägglund,et al.  Automatic Tuning of Pid Controllers , 1988 .

[20]  E. Mosca Optimal, Predictive and Adaptive Control , 1994 .

[21]  Toshiharu Sugie,et al.  Robust PID controller tuning based on the constrained particle swarm optimization , 2008, Autom..

[22]  T. Harris,et al.  Performance assessment measures for univariate feedback control , 1992 .

[23]  Ramon Vilanova,et al.  PID control in the Third Millennium : lessons learned and new approaches , 2012 .

[24]  Tore Hägglund,et al.  Advanced PID Control , 2005 .

[25]  I. Eker,et al.  Sliding mode control with integral action and experimental application to an electromechanical system , 2005, 2005 ICSC Congress on Computational Intelligence Methods and Applications.

[26]  Christopher David Finham Coventry Dixon,et al.  Electric Motor Control , 1974 .

[27]  Frank L. Lewis,et al.  Optimal Control: Lewis/Optimal Control 3e , 2012 .

[28]  Muhammad H. Rashid,et al.  Power electronics handbook , 2001 .