Multi-mapping saliency based on global-local structural information

This paper proposes a saliency detection approach using multi-mapping based on global-local structural information. Firstly, a global-background-suppression(GBS) image and a Lab color space hybrid(CSH) image are obtained through different mapping rules. Secondly, both of them are segmented several times to produce multiple shape images. Thirdly, the above shape images are multiplied with GBS image to build intermediate saliency maps. At the end, all of the maps are fused to generate the final saliency map. The MSRA images are used to verify the proposed algorithm.

[1]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[2]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[3]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[4]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[5]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[6]  Nuno Vasconcelos,et al.  Bottom-up saliency is a discriminant process , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[7]  Pietro Perona,et al.  Is bottom-up attention useful for object recognition? , 2004, CVPR 2004.

[8]  Nuno Vasconcelos,et al.  Saliency-based discriminant tracking , 2009, CVPR.

[9]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[12]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[13]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[14]  Pierre Baldi,et al.  Bayesian surprise attracts human attention , 2005, Vision Research.

[15]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  King Ngi Ngan,et al.  Unsupervised extraction of visual attention objects in color images , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[17]  Xing Xie,et al.  Salient Region Detection Using Weighted Feature Maps Based on the Human Visual Attention Model , 2004, PCM.

[18]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[19]  Stan Sclaroff,et al.  Saliency Detection: A Boolean Map Approach , 2013, 2013 IEEE International Conference on Computer Vision.

[20]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[21]  Ali Borji,et al.  State-of-the-Art in Visual Attention Modeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .