Spatial Structure and Symmetry of Simple-Cell Receptive Fields in Macaque Primary Visual Cortex

[PDF] [Full Text] [Abstract] , October 26, 2004; 101 (43): 15524-15529. PNAS C. F. Stevens Preserving properties of object shape by computations in primary visual cortex [PDF] [Full Text] [Abstract] , February 1, 2005; 18 (2): 381-414. Neural Comput. S. Osindero, M. Welling and G. E. Hinton Topographic Product Models Applied to Natural Scene Statistics [PDF] [Full Text] [Abstract] , January 1, 2006; 95 (1): 379-400. J Neurophysiol J. D. Victor, F. Mechler, M. A. Repucci, K. P. Purpura and T. Sharpee Responses of V1 Neurons to Two-Dimensional Hermite Functions [PDF] [Full Text] [Abstract] , January 18, 2006; 26 (3): 893-907. J. Neurosci. C. C. Pack, B. R. Conway, R. T. Born and M. S. Livingstone Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex [PDF] [Full Text] [Abstract] , July 18, 2007; 27 (29): 7673-7683. J. Neurosci. D. L. Ringach and B. J. Malone The Operating Point of the Cortex: Neurons as Large Deviation Detectors

[1]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[2]  E. Yund,et al.  Responses of striate cortex cells to grating and checkerboard patterns. , 1979, The Journal of physiology.

[3]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[4]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[5]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[6]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[8]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[9]  A. Parker,et al.  Spatial properties of neurons in the monkey striate cortex , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Parker,et al.  Two-dimensional spatial structure of receptive fields in monkey striate cortex. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[12]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[13]  G. ALsnEcHr,et al.  VISUAL CORTICAL RECEPTIVE FIELDS IN MONKEY AND CAT: SPATIAL AND TEMPORAL PHASE TRANSFER FUNCTION , 1989 .

[14]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[15]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[16]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[17]  D. Ruderman The statistics of natural images , 1994 .

[18]  Patrick C. Teo,et al.  A model of perceptual image fidelity , 1995, Proceedings., International Conference on Image Processing.

[19]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[20]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[21]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[22]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[23]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[24]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[25]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[26]  D. Ruderman,et al.  INDEPENDENT COMPONENT ANALYSIS OF NATURAL IMAGE SEQUENCES YIELDS SPATIOTEMPORAL FILTERS SIMILAR TO SIMPLE CELLS IN PRIMARY VISUAL CORTEX , 1998 .

[27]  I. Ohzawa,et al.  Functional Micro-Organization of Primary Visual Cortex: Receptive Field Analysis of Nearby Neurons , 1999, The Journal of Neuroscience.

[28]  R. L. Valois,et al.  Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity , 2000, Vision Research.

[29]  B Willmore,et al.  A Comparison of Natural-Image-Based Models of Simple-Cell Coding , 2000, Perception.

[30]  Bruno A. Olshausen,et al.  Sparse Codes and Spikes , 2001 .

[31]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.