Vertical perimeter versus horizontal perimeter

The discrete Heisenberg group $\mathbb{H}_{\mathbb{Z}}^{2k+1}$ is the group generated by $a_1,b_1,\ldots,a_k,b_k,c$, subject to the relations $[a_1,b_1]=\ldots=[a_k,b_k]=c$ and $[a_i,a_j]=[b_i,b_j]=[a_i,b_j]=[a_i,c]=[b_i,c]=1$ for every distinct $i,j\in \{1,\ldots,k\}$. Denote $S=\{a_1^{\pm 1},b_1^{\pm 1},\ldots,a_k^{\pm 1},b_k^{\pm 1}\}$. The horizontal boundary of $\Omega\subset \mathbb{H}_{\mathbb{Z}}^{2k+1}$, denoted $\partial_{h}\Omega$, is the set of all $(x,y)\in \Omega\times (\mathbb{H}_{\mathbb{Z}}^{2k+1}\setminus \Omega)$ such that $x^{-1}y\in S$. The horizontal perimeter of $\Omega$ is $|\partial_{h}\Omega|$. For $t\in \mathbb{N}$, define $\partial^t_{v} \Omega$ to be the set of all $(x,y)\in \Omega\times (\mathbb{H}_{\mathsf{Z}}^{2k+1}\setminus \Omega)$ such that $x^{-1}y\in \{c^t,c^{-t}\}$. The vertical perimeter of $\Omega$ is defined by $|\partial_{v}\Omega|= \sqrt{\sum_{t=1}^\infty |\partial^t_{v}\Omega|^2/t^2}$. It is shown here that if $k\ge 2$, then $|\partial_{v}\Omega|\lesssim \frac{1}{k} |\partial_{h}\Omega|$. The proof of this "vertical versus horizontal isoperimetric inequality" uses a new structural result that decomposes sets of finite perimeter in the Heisenberg group into pieces that admit an "intrinsic corona decomposition." This allows one to deduce an endpoint $W^{1,1}\to L_2(L_1)$ boundedness of a certain singular integral operator from a corresponding lower-dimensional $W^{1,2}\to L_2(L_2)$ boundedness. The above inequality has several applications, including that any embedding into $L_1$ of a ball of radius $n$ in the word metric on $\mathbb{H}_{\mathbb{Z}}^{5}$ incurs bi-Lipschitz distortion that is at least a constant multiple of $\sqrt{\log n}$. It follows that the integrality gap of the Goemans--Linial semidefinite program for the Sparsest Cut Problem on inputs of size $n$ is at least a constant multiple of $\sqrt{\log n}$.

[1]  Assaf Naor,et al.  An introduction to the Ribe program , 2012, 1205.5993.

[2]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[3]  A KhotSubhash,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative-Type Metrics into ℓ1 , 2015 .

[4]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[5]  F. S. Cassano,et al.  INTRINSIC LIPSCHITZ GRAPHS IN HEISENBERG GROUPS , 2006 .

[6]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[7]  Hideaki Izumi Non-commutative $L^p$-spaces , 1996 .

[8]  Nathan Linial,et al.  The Influence of Variables on Boolean Functions (Extended Abstract) , 1988, FOCS 1988.

[9]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[10]  G. David,et al.  Opérateurs intégraux singuliers sur certaines courbes du plan complexe , 1984 .

[11]  Stefan Heinrich,et al.  Ultraproducts in Banach space theory. , 1980 .

[12]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[13]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[14]  Bruno Franchi,et al.  Rectifiability and perimeter in the Heisenberg group , 2001 .

[15]  James R. Lee,et al.  On distance scales, embeddings, and efficient relaxations of the cut cone , 2005, SODA '05.

[16]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[17]  James R. Lee,et al.  On the Optimality of Gluing over Scales , 2011, Discret. Comput. Geom..

[18]  C. Morawetz The Courant Institute of Mathematical Sciences , 1988 .

[19]  Sébastien Blachère Word distance on the discrete Heisenberg group , 2003 .

[20]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[21]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[22]  Aravindan Vijayaraghavan,et al.  Bilu-Linial Stable Instances of Max Cut and Minimum Multiway Cut , 2013, SODA.

[23]  F. Montefalcone Some relations among volume, intrinsic perimeter and one-dimensional restrictions of $BV$ functions in Carnot groups , 2005 .

[24]  J. Matousek,et al.  Open problems on embeddings of finite metric spaces , 2014 .

[25]  Peter W. Jones Square functions, Cauchy integrals, analytic capacity, and harmonic measure , 1989 .

[26]  Subhash Khot Inapproximability of NP-complete Problems, Discrete Fourier Analysis, and Geometry , 2011 .

[27]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[28]  Mikhail I. Ostrovskii Embeddability of locally finite metric spaces into Banach spaces is finitely determined , 2011 .

[29]  James R. Lee,et al.  Metric Structures in L1: Dimension, Snowflakes, and Average Distortion , 2004, LATIN.

[30]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[31]  Yuval Peres,et al.  Trees and Markov Convexity , 2006, SODA '06.

[32]  J. Bourgain On the distribution of the fourier spectrum of Boolean functions , 2002 .

[33]  Assaf Naor,et al.  Compression bounds for Lipschitz maps from the Heisenberg group to L1 , 2009, ArXiv.

[34]  M. Gromov Carnot-Carathéodory spaces seen from within , 1996 .

[35]  B. Franchi,et al.  Differentiability of Intrinsic Lipschitz Functions within Heisenberg Groups , 2011 .

[36]  G. Pisier,et al.  Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .

[37]  Luigi Ambrosio,et al.  Some Fine Properties of Sets of Finite Perimeter in Ahlfors Regular Metric Measure Spaces , 2001 .

[38]  James R. Lee,et al.  Metric structures in L1: dimension, snowflakes, and average distortion , 2005, Eur. J. Comb..

[39]  Assaf Naor,et al.  L_1 embeddings of the Heisenberg group and fast estimation of graph isoperimetry , 2010, ArXiv.

[40]  Satish Rao,et al.  Small distortion and volume preserving embeddings for planar and Euclidean metrics , 1999, SCG '99.

[41]  Vitali Milman,et al.  Minkowski spaces with extremal distance from the Euclidean space , 1978 .

[42]  Subhash Khot,et al.  On the power of unique 2-prover 1-round games , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[43]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[44]  Sean Li,et al.  Markov convexity and nonembeddability of the Heisenberg group , 2014, 1404.6751.

[45]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[46]  A. Naor,et al.  Snowflake universality of Wasserstein spaces , 2015, 1509.08677.

[47]  James R. Lee,et al.  Near-optimal distortion bounds for embedding doubling spaces into L1 , 2011, STOC '11.

[48]  Assaf Naor,et al.  Vertical versus horizontal Poincaré inequalities on the Heisenberg group , 2012, 1212.2107.

[49]  Robert Young,et al.  Filling multiples of embedded cycles and quantitative nonorientability , 2013, 1312.0966.

[50]  Bruce Kleiner,et al.  A new proof of Gromov's theorem on groups of polynomial growth , 2007, 0710.4593.

[51]  Subhash Khot,et al.  Nonembeddability theorems via Fourier analysis , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[52]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[53]  Yuval Rabani,et al.  Improved lower bounds for embeddings into L1 , 2006, SODA '06.

[54]  Jian Ding,et al.  Markov type and threshold embeddings , 2012, 1208.6088.

[55]  Gilles Lancien,et al.  Embeddings of locally finite metric spaces into Banach spaces , 2007 .

[56]  J. Torrea,et al.  Vector-valued Littlewood-Paley-Stein theory for semigroups , 2006, 1105.6022.

[57]  David B. Shmoys,et al.  Cut problems and their application to divide-and-conquer , 1996 .

[58]  Yuval Rabani,et al.  ON THE HARDNESS OF APPROXIMATING MULTICUT AND SPARSEST-CUT , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[59]  Michael Christ,et al.  A T(b) theorem with remarks on analytic capacity and the Cauchy integral , 1990 .

[60]  S. Semmes,et al.  Analysis of and on uniformly rectifiable sets , 1993 .

[61]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[62]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[63]  Assaf Naor,et al.  Poincaré inequalities, embeddings, and wild groups , 2010, Compositio Mathematica.

[64]  Sean Li,et al.  Coarse differentiation and quantitative nonembeddability for Carnot groups , 2013, 1304.6633.

[65]  Manor Mendel,et al.  Metric Dichotomies , 2007, 0710.1994.

[66]  James R. Lee,et al.  Lp metrics on the Heisenberg group and the Goemans-Linial conjecture , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[67]  Bruce Kleiner,et al.  Metric differentiation, monotonicity and maps to L1 , 2009, 0907.3295.

[68]  Nicola Garofalo,et al.  ISOPERIMETRIC AND SOBOLEV INEQUALITIES FOR CARNOT-CARATHEODORY SPACES AND THE EXISTENCE OF MINIMAL SURFACES , 1996 .

[69]  Assaf Naor,et al.  . 20 24 v 2 [ cs . D S ] 18 N ov 2 00 9 A ( log n ) Ω ( 1 ) integrality gap for the Sparsest Cut SDP , 2009 .

[70]  Keith Ball,et al.  The Ribe Programme , 2011 .

[71]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[72]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[73]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[74]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[75]  F. S. Cassano,et al.  On the structure of finite perimeter sets in step 2 Carnot groups , 2003 .

[76]  Daniel M. Kane,et al.  A PRG for lipschitz functions of polynomials with applications to sparsest cut , 2012, STOC '13.

[77]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[78]  Robert Krauthgamer,et al.  Measured descent: a new embedding method for finite metrics , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[79]  P. Pansu,et al.  Métriques de Carnot-Carthéodory et quasiisométries des espaces symétriques de rang un , 1989 .

[80]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[81]  Hyman Bass,et al.  The Degree of Polynomial Growth of Finitely Generated Nilpotent Groups , 1972 .

[82]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[83]  KhannaSanjeev,et al.  Polynomial flow-cut gaps and hardness of directed cut problems , 2009 .

[84]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[85]  Sanjeev Khanna,et al.  Polynomial flow-cut gaps and hardness of directed cut problems , 2007, STOC '07.

[86]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[87]  R. Ravi,et al.  Approximation through multicommodity flow , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[88]  Nisheeth K. Vishnoi,et al.  Integrality gaps for sparsest cut and minimum linear arrangement problems , 2006, STOC '06.

[89]  G. David Wavelets and Singular Integrals on Curves and Surfaces , 1991 .

[90]  Shuchi Chawla,et al.  Sparsest Cut , 2008, Encyclopedia of Algorithms.

[91]  A. Sinclair,et al.  Quasisymmetric embeddings, the observable diameter, and expansion properties of graphs , 2005 .

[92]  Assaf Naor,et al.  Markov convexity and local rigidity of distorted metrics , 2008, SCG '08.

[93]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[94]  D. de Werra,et al.  Lectures on mathematical programming ismp97 , 1997 .

[95]  B. Maurey,et al.  Chapter 30 - Type, Cotype and K-Convexity , 2003 .

[96]  Assaf Naor,et al.  A $(\log n)^{\Omega(1)}$ Integrality Gap for the Sparsest Cut SDP , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[97]  Bruce Kleiner,et al.  On the differentiability of Lispschitz maps from metric measure spaces to Banach spaces , 2006 .

[98]  Assaf Naor,et al.  The integrality gap of the Goemans-Linial SDP relaxation for sparsest cut is at least a constant multiple of √log n , 2017, STOC.

[99]  Romain Tessera Quantitative property A, Poincaré inequalities, Lp-compression and Lp-distortion for metric measure spaces , 2007 .

[100]  Assaf Naor,et al.  Sharp quantitative nonembeddability of the Heisenberg group into superreflexive Banach spaces , 2010 .

[101]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[102]  L. Trevisan On Khot’s unique games conjecture , 2012 .

[103]  Assaf Naor,et al.  A note on dichotomies for metric transforms , 2011, 1102.1800.

[104]  A. Naor Comparison of Metric Spectral Gaps , 2013, 1308.2851.

[105]  Bernd Kirchheim Rectifiable metric spaces: local structure and regularity of the Hausdorff measure , 1994 .

[106]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .