Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans

A mobile robot exploring an unknown environment has no absolute frame of reference for its position, other than features it detects through its sensors. Using distinguishable landmarks is one possible approach, but it requires solving the object recognition problem. In particular, when the robot uses two-dimensional laser range scans for localization, it is difficult to accurately detect and localize landmarks in the environment (such as corners and occlusions) from the range scans.In this paper, we develop two new iterative algorithms to register a range scan to a previous scan so as to compute relative robot positions in an unknown environment, that avoid the above problems. The first algorithm is based on matching data points with tangent directions in two scans and minimizing a distance function in order to solve the displacement between the scans. The second algorithm establishes correspondences between points in the two scans and then solves the point-to-point least-squares problem to compute the relative pose of the two scans. Our methods work in curved environments and can handle partial occlusions by rejecting outliers.

[1]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[2]  S. Sitharama Iyengar,et al.  Autonomous Mobile Robots , 1991 .

[3]  Ingemar J. Cox,et al.  Blanche: Position Estimation For An Autonomous Robot Vehicle , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[4]  Ingemar J. Cox,et al.  On The Congruence Of Noisy Images To Line Segment Models , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[5]  S. Betge-Brezetz,et al.  Decoupling odometry and exteroceptive perception in building a global world map of a mobile robot: the use of local maps , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[6]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[7]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[8]  S. Nash,et al.  Numerical methods and software , 1990 .

[9]  Gregory Dudek,et al.  Precise positioning using model-based maps , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[10]  James L. Crowley World modeling and position estimation for a mobile robot using ultrasonic ranging , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[11]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[12]  Ingemar J. Cox Blanche: Position Estimation for an Autonomous Robot Vehicle , 1990, Autonomous Robot Vehicles.

[13]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[14]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[15]  Evangelos E. Milios,et al.  Optimal global pose estimation for consistent sensor data registration , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[16]  Vladimir J. Lumelsky,et al.  A comparative study on the path length performance of maze-searching and robot motion planning algorithms , 1991, IEEE Trans. Robotics Autom..

[17]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Katsushi Ikeuchi,et al.  Building 3-D models from unregistered range images , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[20]  Edith Schonberg,et al.  Two-Dimensional, Model-Based, Boundary Matching Using Footprints , 1986 .

[21]  John K. Tsotsos,et al.  Design Of ARK, A Sensor-based Mobile Robot For Industrial Environments , 1993, Proceedings of the Intelligent Vehicles '93 Symposium.

[22]  Tod S. Levitt,et al.  Qualitative Navigation for Mobile Robots , 1990, Artif. Intell..

[23]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Avinash C. Kak,et al.  Fast Vision-guided Mobile Robot Navigation Using Model-based Reasoning And Prediction Of Uncertainties , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  F. Lu,et al.  Shape registration using optimization for mobile robot navigation , 1996 .

[26]  Michael J. Black Robust incremental optical flow , 1992 .

[27]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[28]  Claude L. Fennema,et al.  Model-directed mobile robot navigation , 1990, IEEE Trans. Syst. Man Cybern..

[29]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Robotics Auton. Syst..

[30]  BlaisGérard,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995 .