Data-driven based 3-D fuzzy logic controller design using nearest neighborhood clustering and linear support vector regression

Three-dimensional fuzzy logic controller (3-D FLC) is a novel FLC developed for spatially distributed parameter systems. In this study, we are concerned with data-based 3-D FLC design. A nearest neighborhood clustering algorithm is employed to extract fuzzy rules from input-output data pairs, and then an optimization algorithm based on geometric similarity measure is used to reduce the obtained rule base. The consequent parameters are estimated using linear support vector regression. Finally, a catalytic packed-bed reactor is taken as an application to demonstrate the effectiveness of the 3-D FLC.

[1]  Anil K. Jain,et al.  A Clustering Performance Measure Based on Fuzzy Set Decomposition , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Witold Pedrycz,et al.  Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study , 2010, Fuzzy Sets Syst..

[3]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[4]  Michael I. Jordan,et al.  Learning Spectral Clustering , 2003, NIPS.

[5]  Zhongdong Wu,et al.  Fuzzy C-means clustering algorithm based on kernel method , 2003, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003.

[6]  Chiu Minsen Fuzzy Neural Model with Global Convergence for Batch Process , 2009 .

[7]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[8]  Costas J. Spanos,et al.  Advanced process control , 1989 .

[9]  Maurizio Filippone,et al.  Dealing with non-metric dissimilarities in fuzzy central clustering algorithms , 2009, Int. J. Approx. Reason..

[10]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[11]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, Machine Learning.

[12]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[13]  Michael I. Jordan,et al.  Learning Spectral Clustering, With Application To Speech Separation , 2006, J. Mach. Learn. Res..

[14]  Yinghua Lin,et al.  A fuzzy approach to input variable identification , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[15]  Daoqiang Zhang,et al.  Fuzzy clustering using kernel method , 2002 .

[16]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[17]  John Q. Gan,et al.  Mercer Kernel, Fuzzy C-Means Algorithm, and Prototypes of Clusters , 2004, IDEAL.

[18]  J. Chiang,et al.  A new kernel-based fuzzy clustering approach: support vector clustering with cell growing , 2003, IEEE Trans. Fuzzy Syst..

[19]  Daoqiang Zhang,et al.  Semi-supervised clustering with metric learning: An adaptive kernel method , 2010, Pattern Recognit..

[20]  James C. Bezdek,et al.  Norm-induced shell-prototypes (NISP) clustering , 1995, Neural Parallel Sci. Comput..

[21]  Shitong Wang,et al.  Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets , 2006, Soft Comput..

[22]  Rajesh N. Davé,et al.  Adaptive fuzzy c-shells clustering and detection of ellipses , 1992, IEEE Trans. Neural Networks.

[23]  Shaoyuan Li,et al.  A Three-Dimensional Fuzzy Control Methodology for a Class of Distributed Parameter Systems , 2007, IEEE Transactions on Fuzzy Systems.

[24]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[25]  Dao-Qiang Zhang,et al.  Clustering Incomplete Data Using Kernel-Based Fuzzy C-means Algorithm , 2003, Neural Processing Letters.

[26]  Doheon Lee,et al.  Evaluation of the performance of clustering algorithms in kernel-induced feature space , 2005, Pattern Recognit..

[27]  Uzay Kaymak,et al.  Similarity measures in fuzzy rule base simplification , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[28]  Derek A. Linkens,et al.  Rule-base self-generation and simplification for data-driven fuzzy models , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[29]  N. Cristianini,et al.  On Kernel-Target Alignment , 2001, NIPS.

[30]  Xianxia Zhang,et al.  A novel 3-D fuzzy logic controller design using table look-up scheme , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[31]  Yaochu Jin,et al.  Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement , 2000, IEEE Trans. Fuzzy Syst..

[32]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[33]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[34]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[35]  John E. Rijnsdorp,et al.  Advanced process control: W. Harmon Ray , 1982, Autom..

[36]  Francesco Masulli,et al.  A survey of kernel and spectral methods for clustering , 2008, Pattern Recognit..

[37]  J. P. Wainwright,et al.  System modelling and identification of Mega-Amp Spherical Tokamak , 2001 .