Estimation and control with relative measurements: algorithms and scaling laws

In this dissertation we examine a class of estimation and control problems involving interconnected systems. These problems share the common attribute that, between two component subsystems, noisy measurements of the difference of their states alone is available. The estimation problem is relevant to sensor and actuator networks, and the control problem is relevant to coordination in multi-agent systems. Both classes of problems are defined over a graph that is used to describe the interconnections. In the first part of this dissertation, the estimation problem is examined. The variables correspond to the nodes of a graph, and the measurements of the noisy difference between pairs of variables correspond to its edges. The task is to compute estimates of the node variables with respect to a reference node. We begin by designing distributed algorithms to compute the optimal estimate, which refers to the best linear unbiased estimator (BLUE). We then examine the effect of the graph structure on the minimum achievable estimation error. Specifically, we examine how the optimal estimation error of a node variable grows with its distance from the reference node. A classification of graphs—sparse and dense in 1D, 2D, and 3D—is obtained, which determines the error growth rate: linear, logarithmic, or bounded. In the second part of this dissertation, the control of formations over arbitrary graphs is described. Specifically, we examine how the structure of the interconnection graph affects the stability and sensitivity to measurement noise of the formation. The vehicular platoon problem is investigated in detail—especially the decentralized bidirectional control architecture in which each vehicle uses front and back spacing measurements to compute its control signal. Fundamental limitations in disturbance amplification are established for the symmetric bidirectional architecture. Then we show that arbitrary small asymmetry in the front and back controller gains can lead to an order of magnitude improvement in stability margin. The underlying theme of our investigations is that of performance degradation—and possible amelioration—in interconnected systems as the number of constituent sub-systems increases.

[1]  Seth J. Teller,et al.  The cricket compass for context-aware mobile applications , 2001, MobiCom '01.

[2]  Reggie J. Caudill,et al.  Vehicle-Follower Longitudinal Control for Automated Transit Vehicles , 1977 .

[3]  Mihailo R. Jovanovic,et al.  On the ill-posedness of certain vehicular platoon control problems , 2005, IEEE Transactions on Automatic Control.

[4]  Leif Nøttestad,et al.  Herring schooling manoeuvres in response to killer whale attacks , 1999 .

[5]  V. Sunder,et al.  The Laplacian spectrum of a graph , 1990 .

[6]  Raghuraman Mudumbai,et al.  Scalable feedback control for distributed beamforming in sensor networks , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[7]  A.O. Hero,et al.  Location estimation accuracy in wireless sensor networks , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[8]  L. P. Hajdu,et al.  Design and control considerations for automated ground transportation systems , 1968 .

[9]  Brian D. O. Anderson,et al.  Localization in sparse networks using sweeps , 2006, MobiCom '06.

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Mani B. Srivastava,et al.  Dynamic fine-grained localization in Ad-Hoc networks of sensors , 2001, MobiCom '01.

[12]  Gene H. Golub,et al.  Matrix computations , 1983 .

[13]  Cédric Langbort,et al.  Distributed control design for systems interconnected over an arbitrary graph , 2004, IEEE Transactions on Automatic Control.

[14]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[15]  D. Hummel Aerodynamic aspects of formation flight in birds , 1983 .

[16]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[17]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[18]  D. Szyld,et al.  On asynchronous iterations , 2000 .

[19]  Andrea Goldsmith,et al.  Effects of communication delay on string stability in vehicle platoons , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[20]  Deborah Estrin,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Fine-grained Network Time Synchronization Using Reference Broadcasts , 2022 .

[21]  Gaurav S. Sukhatme,et al.  Ad-hoc localization using ranging and sectoring , 2004, IEEE INFOCOM 2004.

[22]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[23]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[24]  Gaurav S. Sukhatme,et al.  The SDR Experience: Experiments with a Large-Scale Heterogeneous Mobile Robot Team , 2004, ISER.

[25]  Randall D. Bartos,et al.  The StarLight space interferometer: optical design and performance modeling , 2003, SPIE Astronomical Telescopes + Instrumentation.

[26]  Mani B. Srivastava,et al.  IEEE TRANSACTIONS ON MOBILE COMPUTING 1 An Analysis of Error Inducing Parameters in Multihop Sensor Node Localization , 2004 .

[27]  Peter Seiler,et al.  Disturbance propagation in vehicle strings , 2004, IEEE Transactions on Automatic Control.

[28]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[29]  Alfred O. Hero,et al.  Relative location estimation in wireless sensor networks , 2003, IEEE Trans. Signal Process..

[30]  F. Y. Wu Theory of resistor networks: the two-point resistance , 2004 .

[31]  João Pedro Hespanha,et al.  Effective resistance of Gromov-hyperbolic graphs: Application to asymptotic sensor network problems , 2007, 2007 46th IEEE Conference on Decision and Control.

[32]  Gerardo Lafferriere,et al.  Decentralized control of vehicle formations , 2005, Syst. Control. Lett..

[33]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[34]  David C. Moore,et al.  Robust distributed network localization with noisy range measurements , 2004, SenSys '04.

[35]  João Pedro Hespanha,et al.  Distributed Optimal Estimation from Relative Measurements for Localization and Time Synchronization , 2006, DCOSS.

[36]  L. El Ghaoui,et al.  Convex position estimation in wireless sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[37]  Iven M. Y. Mareels,et al.  Control of Large-Scale Irrigation Networks , 2007, Proceedings of the IEEE.

[38]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[40]  Dipak Ghosal,et al.  Multipath Routing in Mobile Ad Hoc Networks: Issues and Challenges , 2003, MASCOTS Tutorials.

[41]  Petros G. Voulgaris,et al.  A convex characterization of distributed control problems in spatially invariant systems with communication constraints , 2005, Syst. Control. Lett..

[42]  Petros A. Ioannou,et al.  A Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles1 , 1994 .

[43]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[44]  Jie Gao,et al.  Localization and routing in sensor networks by local angle information , 2005, MobiHoc '05.

[45]  M. Pachter,et al.  Flight Test Results of Close Formation Flight for Fuel Savings , 2002 .

[46]  D. Szyld,et al.  ASYNCHRONOUS WEIGHTED ADDITIVE SCHWARZ METHODS , 1997 .

[47]  Anantha Chandrakasan,et al.  Low-power wireless sensor networks , 2001, VLSI Design 2001. Fourteenth International Conference on VLSI Design.

[48]  David L. Mills,et al.  Internet time synchronization: the network time protocol , 1991, IEEE Trans. Commun..

[49]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[50]  B. R. Badrinath,et al.  Ad hoc positioning system (APS) using AOA , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[51]  Deborah Estrin,et al.  An energy-efficient MAC protocol for wireless sensor networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[52]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[53]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[54]  Vivek S. Borkar,et al.  A New Distributed Time Synchronization Protocol for Multihop Wireless Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[55]  Nisheeth Shrivastava,et al.  Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms , 2006, SenSys '06.

[56]  G. Poole Generalized $M$-matrices and applications , 1975 .

[57]  Luca Dieci,et al.  Block M-Matrices and Computation of Invariant Tori , 1992, SIAM J. Sci. Comput..

[58]  O. Bendiksen Localization phenomena in structural dynamics , 2000 .

[59]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.

[60]  J. Hedrick,et al.  String stability of interconnected systems , 1996, IEEE Trans. Autom. Control..

[61]  J. Strikwerda A probabilistic analysis of asynchronous iteration , 2002 .

[62]  Arunabha Sen,et al.  Broadcast scheduling algorithms for radio networks , 1995, Proceedings of MILCOM '95.

[63]  Gang Zhou,et al.  Achieving Real-Time Target Tracking UsingWireless Sensor Networks , 2006, 12th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'06).

[64]  Randy H. Katz,et al.  Emerging challenges: Mobile networking for “Smart Dust” , 2000, Journal of Communications and Networks.

[65]  Samir Datta,et al.  Distributed Sleep-Scheduling Protocols for Energy Conservation in Wireless Networks , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[66]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 1989, STOC '89.

[67]  M. Tomizuka,et al.  Control issues in automated highway systems , 1994, IEEE Control Systems.

[68]  Cutts,et al.  ENERGY SAVINGS IN FORMATION FLIGHT OF PINK-FOOTED GEESE , 1994, The Journal of experimental biology.

[69]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[70]  Rajesh Rajamani,et al.  Demonstration of an automated highway platoon system , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[71]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[72]  Koen Langendoen,et al.  Distributed localization in wireless sensor networks: a quantitative compariso , 2003, Comput. Networks.

[73]  Katia Obraczka,et al.  Modeling energy consumption in single-hop IEEE 802.11 ad hoc networks , 2004, Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969).

[74]  Datta N. Godbole,et al.  Automated Highway Systems , 1996 .

[75]  J. Keller The shape of the strongest column , 1960 .

[76]  Steven E Shladover LONGITUDINAL CONTROL OF AUTOMOTIVE VEHICLES IN CLOSE-FORMATION PLATOONS , 1989 .

[77]  K. R. Rajagopal,et al.  Aggregation of a class of interconnected, linear dynamical systems , 2001, Syst. Control. Lett..

[78]  W. Herrnkind,et al.  Drag Reduction by Formation Movement in Spiny Lobsters , 1976, Science.

[79]  P. Barooah,et al.  Estimation from relative measurements: error bounds from electrical analogy , 2005, Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005..

[80]  S. Resnick A Probability Path , 1999 .

[81]  Reinhard Nabben,et al.  On a class of matrices which arise in the numerical solution of Euler equations , 1992 .

[82]  Long Wang,et al.  Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions , 2006 .

[83]  Damla Turgut,et al.  A simulation study of a MAC layer protocol for wireless networks with asymmetric links , 2006, IWCMC '06.

[84]  M. Bruno,et al.  The Skill of an Urban Ocean Forecast System , 2006 .

[85]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[86]  A. Swami,et al.  Synchronization in Sensor Networks: an Overview , 2006, MILCOM 2006 - 2006 IEEE Military Communications conference.

[87]  Gaurav S. Sukhatme,et al.  Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..

[88]  Chen Zhang,et al.  ExScal: elements of an extreme scale wireless sensor network , 2005, 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA'05).

[89]  Shraga Shoval,et al.  Measuring The Relative Position And Orientation Between Two Mobile Robots With Binaural Sonar , 2001 .

[90]  Giri Narasimhan,et al.  Approximating the Stretch Factor of Euclidean Graphs , 2000, SIAM J. Comput..

[91]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[92]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[93]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[94]  Tariq Samad,et al.  Network-Centric Systems for Military Operations in Urban Terrain: The Role of UAVs , 2007, Proceedings of the IEEE.

[95]  V. Delouille,et al.  Robust distributed estimation in sensor networks using the embedded polygons algorithm , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[96]  F. Bullo,et al.  Motion Coordination with Distributed Information , 2007 .

[97]  Mireille E. Broucke,et al.  Formations of vehicles in cyclic pursuit , 2004, IEEE Transactions on Automatic Control.

[98]  S. Melzer,et al.  A closed-form solution for the optimal error regulation of a string of moving vehicles , 1971 .

[99]  M.E. Khatir,et al.  Decentralized control of a large platoon of vehicles using non-identical controllers , 2004, Proceedings of the 2004 American Control Conference.

[100]  M. Athans,et al.  On the optimal error regulation of a string of moving vehicles , 1966 .

[101]  Ramesh Govindan,et al.  Monitoring civil structures with a wireless sensor network , 2006, IEEE Internet Computing.

[102]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[103]  T. B. Boffey,et al.  Applied Graph Theory , 1973 .

[104]  B. R. Badrinath,et al.  Error characteristics of ad hoc positioning systems (aps) , 2004, MobiHoc '04.

[105]  Deborah Estrin,et al.  Optimal and Global Time Synchronization in Sensornets , 2003 .

[106]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[107]  L. Peppard,et al.  String stability of relative-motion PID vehicle control systems , 1974 .

[108]  L. Elsner,et al.  Convergence of block iterative methods for linear systems arising in the numerical solution of Euler equations , 1991 .

[109]  Charles A. Desoer,et al.  Longitudinal control of a platoon of vehicles with no communication of lead vehicle information: a system level study , 1993 .