Robust State Estimator Design for Systems with Unknown Exogenous Inputs: A Risk-Sensitive Approach

In this paper, a robust state estimation problem for discrete-time systems with unknown exogenous inputs is investigated utilizing a risk-sensitive filtering approach. By proposing a Radon-Nikodym derivative, we introduce a reference measure under which the measurement and system state become independent. Based on this independent property and by treating the unknown inputs as a process modeled by a non-informative prior, we derive the reformulated risk-sensitive cost criterion under the reference measure and further propose a recursive algorithm for the risk-sensitive state estimate. A simulation example is provided to validate the theoretical results, where the proposed estimator is shown to outperform the MMSE estimator for unknown input case under the scenario subject to system parameter uncertainties.

[1]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[2]  Mübeccel Demirekler,et al.  Risk-sensitive filtering for jump Markov linear systems , 2008, Autom..

[3]  Mohamed Darouach,et al.  Event-based state estimation of linear dynamic systems with unknown exogenous inputs , 2016, Autom..

[4]  Emilio Frazzoli,et al.  A unified filter for simultaneous input and state estimation of linear discrete-time stochastic systems , 2013, Autom..

[5]  Steven I. Marcus,et al.  Estimation of hidden markov models: risk-sensitive filter banks and qualitative analysis of their sample paths , 2002, IEEE Trans. Autom. Control..

[6]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[7]  John B. Moore,et al.  Risk-sensitive filtering and smoothing via reference probability methods , 1997, IEEE Trans. Autom. Control..

[8]  Mohamed Darouach,et al.  New unified H∞ dynamic observer design for linear systems with unknown inputs , 2016, Autom..

[9]  Baibing Li,et al.  State estimation with partially observed inputs: A unified Kalman filtering approach , 2013, Autom..

[10]  J. Speyer,et al.  Optimal stochastic estimation with exponential cost criteria , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[11]  Mohamed Darouach,et al.  Robust state estimation and unknown inputs reconstruction for a class of nonlinear systems: Multiobjective approach , 2016, Autom..

[12]  Bart De Moor,et al.  Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough , 2007, Autom..

[13]  Mohamed Darouach,et al.  Unbiased minimum variance estimation for systems with unknown exogenous inputs , 1997, Autom..

[14]  Donghua Zhou,et al.  Unbiased minimum-variance state estimation for linear systems with unknown input , 2009, Autom..

[15]  Ian R. Petersen,et al.  Robustness and risk-sensitive filtering , 2002, IEEE Trans. Autom. Control..

[16]  John B. Moore,et al.  Risk-sensitive filtering and smoothing for hidden Markov models , 1995 .

[17]  Peter K. Kitanidis,et al.  Unbiased minimum-variance linear state estimation , 1987, Autom..

[18]  Thilo Sauter,et al.  End-to-End Communication Architecture for Smart Grids , 2011, IEEE Transactions on Industrial Electronics.