The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates

Because of its distinctive architecture, connections, and functions, primary visual cortex, area 17 or V1 of primates, can be easily identified in most mammals (Kaas, 1987). V1 (also referred to as striate cortex) is particularly distinctive in primates, and, as a result, it was the first cortical area identified histologically (see Gennari, 1782, in Fulton, 1937). V1 of most, if not all, primates has a number of conspicuous features that distinguish this structure from its homologue in other mammals. Unlike carnivores, such as cats and ferrets, almost all of the visual input relayed from the lateral geniculate nucleus (LGN) of primates terminates in V1 (Benevento and Standage, 1982; Bullier and Kennedy, 1983; see Henry, 1991, for review), and lesions of V1 produce a severe deficit known as cortical blindness (e.g., Cowey and Stoerig, 1989). In addition, visual cortex of all primates is activated by physiologically and morphologically distinguishable streams, or channels, of inputs that are relayed from the retina to V1 in a manner unique to primates (Kaas and Huerta, 1988; Casagrande and Norton, 1991). Furthermore, the intrinsic connections of V1 in primates exhibit both vertical (laminar) and areal (modular) distinctions that appear designed to create new output channels from input channels via features of internal circuitry. Finally, the output streams project to visual areas that seem to be organized in a manner unique to primates. In particular, the major cortical target of V1, the second visual area, V2, is composed of three morphologically distinct modules that are differentially activated from V1, and at least one other major target of V1, the middle temporal visual area or MT, appears to be a unique specialization of primates (Kaas and Preuss, 1993). These common features of visual cortex in primates are of particular interest because these specializations relate to vision in humans as well as other primates. In this review, we focus on common features that have been described for V1 across a variety of primate species, and therefore are most likely to be present in most or all primates. In addition, we describe differences in V1 organization across primate groups, since these differences may relate to functional specializations and adaptations in the greatly varied primate order. Features that vary across taxa, when related to behavioral niches, may provide clues as to the significance of variations. Finally, this review briefly compares V1 in primates with V1 in some nonprimates to emphasize the distinctiveness of V1 in primates.

[1]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  V. Casagrande,et al.  Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: Correlations with patterns of cytochrome oxidase , 1993, The Journal of comparative neurology.

[3]  S. Zeki,et al.  The cortical projections of foveal striate cortex in the rhesus monkey. , 1978, The Journal of physiology.

[4]  S. Hockfield,et al.  A surface antigen that identifies ocular dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus. , 1983, Cold Spring Harbor symposia on quantitative biology.

[5]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. K. Harting,et al.  The Mammalian Superior Colliculus: Studies of Its Morphology and Connections , 1984 .

[7]  V. Casagrande,et al.  The morphology of collicular and retinal axons ending on small relay (W-like) cells of the primate lateral geniculate nucleus , 1993, Visual Neuroscience.

[8]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[9]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[11]  J. Kaas,et al.  The postnatal development of geniculocortical axon arbors in owl monkeys , 1994, Visual Neuroscience.

[12]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[13]  S. Zeki Interhemispheric connections of prestriate cortex in monkey. , 1970, Brain research.

[14]  V. Casagrande,et al.  Demonstration of ocular dominance columns in a New World primate by means of monocular deprivation , 1981, Brain Research.

[15]  J. Kaas,et al.  Ocular dominance columns in area 17 of Old World macaque and talapoin monkeys: Complete reconstructions and quantitative analyses , 1992, Visual Neuroscience.

[16]  D. Fitzpatrick,et al.  The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  A. L. Humphrey,et al.  Anatomical banding of intrinsic connections in striate cortex of tree shrews (Tupaia glis) , 1982, The Journal of comparative neurology.

[18]  R. Weller,et al.  Cortical connections of dorsal cortex rostral to V II in squirrel monkeys , 1991, The Journal of comparative neurology.

[19]  M. Cynader,et al.  Laminar distribution of receptors in monkey (Macaca fascicularis) geniculostriate system , 1986, The Journal of comparative neurology.

[20]  J. Tigges,et al.  Ocular dominance columns in the striate cortex of chimpanzee (Pan troglodytes) , 1979, Brain Research.

[21]  A. Rosenquist,et al.  Corticocortical connections among visual areas in the cat , 1984, The Journal of comparative neurology.

[22]  J. Lund,et al.  Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B , 1997, The Journal of comparative neurology.

[23]  J. Kaas,et al.  Multiple representations of the body within the primary somatosensory cortex of primates. , 1979, Science.

[24]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[26]  S. Palay,et al.  A review of lamination in Area 17 of the visual cortex ofMacaca, mulatta , 1974, Journal of neurocytology.

[27]  W T Newsome,et al.  Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis , 1980, The Journal of comparative neurology.

[28]  L. Garey A light and electron microscopic study of the visual cortex of the cat and monkey , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[30]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[31]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[32]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[33]  D. Whitteridge,et al.  Binocular visual mechanisms in cortical areas I and II of the sheep. , 1976, The Journal of physiology.

[34]  D. C. Essen,et al.  Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[35]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  J. Cronly-Dillon,et al.  Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.

[37]  Jon H. Kaas Do humans see what monkeys see? , 1992, Trends in Neurosciences.

[38]  V. Casagrande,et al.  Direct W‐like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: Axon morphology , 1992, The Journal of comparative neurology.

[39]  J. Kaas,et al.  Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. , 1976, Science.

[40]  S. Levay Chapter 14: The patchy intrinsic projections of visual cortex , 1988 .

[41]  R E Weller,et al.  Subdivisions and connections of inferior temporal cortex in owl monkeys , 1987, The Journal of comparative neurology.

[42]  V. Casagrande,et al.  Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). , 1982, Journal of neurophysiology.

[43]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Vivien A. Casagrande,et al.  W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus) , 1986, Brain Research.

[45]  V. Casagrande,et al.  Ocular dominance columns and retinal projections in new world spider monkeys (Ateles ater) , 1986, The Journal of comparative neurology.

[46]  D H Hubel,et al.  Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. , 1974, Brain research.

[47]  S. Sherman,et al.  Organization of visual pathways in normal and visually deprived cats. , 1982, Physiological reviews.

[48]  A. Gibson,et al.  Corticopontine visual projections in macaque monkeys , 1980, The Journal of comparative neurology.

[49]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[50]  M. Cynader,et al.  Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. , 1974, Journal of neurophysiology.

[51]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  V. Montero Patterns of connections from the striate cortex to cortical visual areas in superior temporal sulcus of macaque and middle temporal gyrus of owl monkey , 1980, The Journal of comparative neurology.

[53]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[54]  L. Benevento,et al.  Demonstration of lack of dorsal lateral geniculate nucleus input to extrastriate areas MT and Visual 2 in the macaque monkey , 1982, Brain Research.

[55]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[56]  V. Casagrande,et al.  Morphology of geniculo-striate afferents in a prosimian primate , 1983, Brain Research.

[57]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  D. O'Leary,et al.  Occipital cortical neurons with transient pyramidal tract axons extend and maintain collaterals to subcortical but not intracortical targets , 1985, Brain Research.

[59]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis) , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  S Zeki,et al.  A direct projection from area V1 to area V3A of rhesus monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[61]  J. Kaas,et al.  Evidence for the loss of X-cells of the retina after long-term ablation of visual cortex in monkeys , 1979, Brain Research.

[62]  M. Wong-Riley,et al.  Laminar and cellular localization of cytochrome oxidase in the cat striate cortex , 1986, The Journal of comparative neurology.

[63]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[64]  D. Fitzpatrick,et al.  Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew , 1992, The Journal of comparative neurology.

[65]  J. T. Weber,et al.  Interhemispheric connections in the visual cortex of the squirrel monkey (Saimiri sciureus) , 1987, The Journal of comparative neurology.

[66]  K. Yoshida,et al.  The afferent and efferent organization of the lateral geniculo‐prestriate pathways in the macaque monkey , 1981, The Journal of comparative neurology.

[67]  V. Casagrande,et al.  Transneuronal transport of tritiated fucose and proline in the visual pathways of tree shrew Tupaia glis , 1975, Brain Research.

[68]  W. J. Nowack Neurobiology of Neocortex , 1989, Neurology.

[69]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  M. Silverman,et al.  Spatial-frequency organization in primate striate cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[72]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[73]  D. Fitzpatrick,et al.  Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew's striate cortex , 1990, The Journal of comparative neurology.

[74]  R E Weller,et al.  Cortical connections of striate cortex in the owl monkey , 1982, The Journal of comparative neurology.

[75]  D. Purves,et al.  Numbers of "blobs" in the primary visual cortex of neonatal and adult monkeys. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[76]  W. B. Spatz Loss of ocular dominance columns with maturity in the monkey, Callithrix jacchus , 1989, Brain Research.

[77]  Michael H. Rowe,et al.  Some observations on the patterns of segregated geniculate inputs to the visual cortex in New World primates: an autoradiographic study , 1978, Brain Research.

[78]  V. Casagrande,et al.  Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis): I. Adult Patterns , 1990, The Journal of comparative neurology.

[79]  Henry Kennedy,et al.  Functional implications of the anatomical organization of the callosal projections of visual areas V1 and V2 in the macaque monkey , 1988, Behavioural Brain Research.

[80]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  J. Kaas,et al.  Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nycticebus coucang). , 1993, Brain, behavior and evolution.

[82]  A. Hendrickson,et al.  The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey , 1977, Brain Research.

[83]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[85]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[86]  D. Fitzpatrick,et al.  Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus , 1985, The Journal of comparative neurology.

[87]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[88]  S. Levay,et al.  Contribution of the cortico-claustral loop to receptive field properties in area 17 of the cat , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  J Bullier,et al.  Organization of the callosal connections of visual areas v1 and v2 in the macaque monkey , 1986, The Journal of comparative neurology.

[90]  A. B. Bonds,et al.  Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns. , 1993, Journal of neurophysiology.

[91]  R. Desimone,et al.  Attentional control of visual perception: cortical and subcortical mechanisms. , 1990, Cold Spring Harbor symposia on quantitative biology.

[92]  H. Swadlow,et al.  Interhemispheric striate projections in the prosimian primate, Galago senegalensis. , 1980, Brain, behavior and evolution.

[93]  L Krubitzer,et al.  Convergence of processing channels in the extrastriate cortex of monkeys , 1990, Visual Neuroscience.

[94]  R E Weller,et al.  Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys , 1984, The Journal of comparative neurology.

[95]  H. Swadlow Efferent systems of primary visual cortex: A review of structure and function , 1983, Brain Research Reviews.

[96]  J. Kaas,et al.  Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus) , 1984, The Journal of comparative neurology.

[97]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[98]  R. Fox,et al.  Spatial resolution of the galago , 1986, Vision Research.

[99]  D. Fitzpatrick,et al.  Layer I of striate cortex of Tupaia glis and Galago senegalensis: Projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase , 1979, The Journal of comparative neurology.

[100]  K. Sanderson,et al.  Transneuronal transport of tritiated fucose and proline in the visual pathways of the brushtailed possum, Trichosurus vulpecula , 1980, Neuroscience Letters.

[101]  Clark We,et al.  The Visual Cortex of Primates. , 1925 .

[102]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[103]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[105]  R Gattass,et al.  Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study , 1991, The Journal of comparative neurology.

[106]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[108]  B. Gulyás,et al.  Functional Organization of the Human Visual Cortex , 1993 .

[109]  Jon H. Kaas,et al.  The Organization of Visual Cortex in Primates: Problems, Conclusions, and the Use of Comparative Studies in Understanding the Human Brain , 1993 .

[110]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .

[111]  J. Kaas,et al.  The projections of the lateral geniculate nucleus of the squirrel monkey: Studies of the interlaminar zones and the S layers , 1983, The Journal of comparative neurology.

[112]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[113]  V. Casagrande,et al.  The role of retinogeniculate afferents in the development of connections between visual cortex and the dorsal lateral geniculate nucleus. , 1983, Brain research.

[114]  A. L. Humphrey,et al.  Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  I. T. Diamond,et al.  Laminar organization of projections of the lateral geniculate nucleus to the striate cortex inGalago , 1976, Brain Research.

[116]  A. Morel,et al.  Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  M. Piercy Functions of the corpus callosum: Ciba Foundation Study Group No. 20. Edited by E.G. Ettlinger. J. and A. Churchill, London. 156 pp. 20s , 1966 .

[118]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[119]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  M. Wong-Riley,et al.  Quantitative light and electron microscopic analysis of cytochrome oxidase‐rich zones in the striate cortex of the squirrel monkey , 1984, The Journal of comparative neurology.

[121]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[122]  Leslie G. Ungerleider,et al.  Visuotopic organization of projections from striate cortex to inferior and lateral pulvinar in rhesus monkey , 1983, The Journal of comparative neurology.

[123]  D. Ferster,et al.  The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat , 1978, The Journal of comparative neurology.

[124]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  E. Switkes,et al.  Deoxyglucose analysis of retinotopic organization in primate striate cortex. , 1982, Science.

[126]  R E Weller,et al.  Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys , 1991, The Journal of comparative neurology.

[127]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[128]  J. Kaas,et al.  Area 17 lesions deactivate area MT in owl monkeys , 1992, Visual Neuroscience.

[129]  J. Horton,et al.  Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[130]  R B Tootell,et al.  Spatial frequency tuning of single units in macaque supragranular striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[131]  J. Kaas,et al.  Cortical connections of area 17 in tree shrews , 1984, The Journal of comparative neurology.

[132]  E. Crosby,et al.  Evolution of the Forebrain , 1966, Springer US.

[133]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[134]  A. Burkhalter,et al.  Organization of corticocortical connections in human visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[135]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[136]  U. Dräger,et al.  Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. , 1974, Brain research.

[137]  V. Casagrande,et al.  The projection of the primate superior colliculus upon the dorsal lateral geniculate nucleus: autoradiographic demonstration of interlaminar distribution of tectogeniculate axons , 1978, Brain Research.

[138]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[139]  D. Whitteridge,et al.  The cortical visual areas of the sheep. , 1976, The Journal of physiology.

[140]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[141]  J. Lund,et al.  Anatomical organization of primate visual cortex area VII , 1981, The Journal of comparative neurology.

[142]  J. Kaas The organization of neocortex in mammals: implications for theories of brain function. , 1987, Annual review of psychology.

[143]  A. Peters,et al.  An autoradiographic study of the projections from the lateral geniculate body of the rat , 1975, Brain Research.

[144]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[145]  V. Casagrande,et al.  Transneuronal transport of [3H]proline within the visual system of the grey squirrel , 1977, Brain Research.

[146]  R. Born,et al.  Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[147]  J. Tigges,et al.  Anatomical consequences of long‐term monocular eyelid closure on lateral geniculate nucleus and atriate cortex in squirrel monkey , 1984, The Journal of comparative neurology.

[148]  R. C. Van Sluyters,et al.  The overall pattern of ocular dominance bands in cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[149]  A. Peters,et al.  Layer IVA of rhesus monkey primary visual cortex. , 1991, Cerebral cortex.

[150]  A. Burkhalter,et al.  Organization of local axon collaterals of efferent projection neurons in rat visual cortex , 1990, The Journal of comparative neurology.

[151]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[152]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[153]  D. B. Bender Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus , 1983, Brain Research.

[154]  Sholl Da Organization of the Cerebral Cortex , 1967 .

[155]  I. T. Diamond,et al.  The Organization and Function of the Visual Cortex in the Tree Shrew; pp. 244–263 , 1968 .

[156]  V S Ramachandran,et al.  Some neural connections subserving binocular vision in ungulates. , 1984, Brain, behavior and evolution.

[157]  David H. Hubel,et al.  An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis) , 1975, Brain Research.

[158]  J. Tigges,et al.  Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri) , 1981, The Journal of comparative neurology.

[159]  D. Raczkowski,et al.  Cortical connections of the pulvinar nucleus in Galago , 1980, The Journal of comparative neurology.

[160]  T. L. Hickey,et al.  Ocular dominance columns: evidence for their presence in humans , 1980, Brain Research.

[161]  R. Tootell,et al.  Functional anatomy of the second visual area (V2) in the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[162]  A. Rosenquist,et al.  Laminar origins of visual corticocortical connections in the cat , 1984, The Journal of comparative neurology.

[163]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[164]  J. Kaas,et al.  Archontan Affinities as Reflected in the Visual System , 1993 .

[165]  J. Tigges,et al.  Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey , 1977, The Journal of comparative neurology.

[166]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[167]  T. T. Norton,et al.  Laminar organization of receptive field properties in the dorsal lateral geniculate nucleus of the tree shrew (Tupaiaglis belangeri) , 1995, The Journal of comparative neurology.

[168]  V. Casagrande,et al.  The distribution and morphology of corticogeniculate axons in ferrets , 1990, Brain Research.

[169]  Leslie G. Ungerleider,et al.  Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2 , 1986, The Journal of comparative neurology.

[170]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[171]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[172]  S. Murray Sherman,et al.  X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew (Tupaia glis) , 1975, Brain Research.

[173]  D. V. van Essen,et al.  Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey , 1990, Visual Neuroscience.

[174]  R C Van Sluyters,et al.  Cytochrome-oxidase blobs in cat primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[175]  D. Haines The Lesser Bushbaby (Galago) as an Animal Model: Selected Topics , 1982 .

[176]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[177]  J. Kaas,et al.  The relay of ipsilateral and contralateral retinal input from the lateral geniculate nucleus to striate cortex in the owl monkey: a transneuronal transport study , 1976, Brain Research.

[178]  M. Mishkin,et al.  OCCIPITOTEMPORAL CORTICOCORTICAL CONNECTIONS IN THE RHESUS MONKEY. , 1965, Experimental neurology.

[179]  J. Kaas,et al.  Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus , 1979, The Journal of comparative neurology.

[180]  K. Hoffmann,et al.  Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) of macaque monkeys , 1991, The Journal of comparative neurology.

[181]  J. L. Conway,et al.  Laminar organization of tree shrew dorsal lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[182]  G. Edelman,et al.  Signal and sense : local and global order in perceptual maps , 1990 .

[183]  V A Casagrande,et al.  Organization of individual afferent axons in layer IV of striate cortex in a primate , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[184]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[185]  M Diksic,et al.  Functional organization in the ferret visual cortex: a double-label 2- deoxyglucose study , 1990, Journal of Neuroscience.

[186]  D. Fitzpatrick,et al.  The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus) , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[187]  W. C. Hall,et al.  Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis) , 1973, The Journal of comparative neurology.

[188]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[189]  M. Edwards,et al.  Anatomical demonstration of ocular segregation in the retinogeniculocortical pathway of the new world capuchin monkey (Cebus apella) , 1987, The Journal of comparative neurology.

[190]  S. Clarke,et al.  Occipital cortex in man: Organization of callosal connections, related myelo‐ and cytoarchitecture, and putative boundaries of functional visual areas , 1990, The Journal of comparative neurology.

[191]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[192]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[193]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[194]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[195]  J. Kaas,et al.  Connections of striate cortex in the prosimian, galago senegalensis , 1978, The Journal of comparative neurology.

[196]  J. Kaas,et al.  The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. , 1974, Brain research.

[197]  J. H. Kaas,et al.  Surface view patterns of intrinsic and extrinsic cortical connections of area 17 in a prosimian primate , 1988, Brain Research.

[198]  J. Kaas,et al.  The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). , 1975 .

[199]  H. Vanegas,et al.  Comparative neurology of the optic tectum , 1984 .

[200]  K. Rockland,et al.  Laminar distribution of neurons projecting from area V1 to V2 in macaque and squirrel monkeys. , 1992, Cerebral cortex.

[201]  J. Kaas,et al.  The inferior pulvinar complex in owl monkeys: Architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex , 1979, The Journal of comparative neurology.

[202]  M. Colonnier,et al.  An anterograde degeneration study of the tangential spread of axons in cortical areas 17 and 18 of the squirrel monkey (Saimiri Sciureus) , 1978, The Journal of comparative neurology.

[203]  Jonathan Stone,et al.  Parallel Processing in the Visual System: The Classification of Retinal Ganglion Cells and its Impact on the Neurobiology of Vision , 1983 .

[204]  V. Casagrande,et al.  Development of geniculocortical axon arbors in a primate , 1990, Visual Neuroscience.

[205]  A. L. Humphrey,et al.  Termination patterns of individual X‐ and Y‐cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18 , 1985, The Journal of comparative neurology.

[206]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[207]  L. Benevento,et al.  A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey , 1979, Brain Research.

[208]  M. Wong-Riley,et al.  Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain , 1993, Visual Neuroscience.

[209]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[210]  S. Levay,et al.  Functional organization of primary visual cortex in the mink (Mustela vison) and a comparison with the cat , 1987, The Journal of comparative neurology.

[211]  H. Kennedy,et al.  Topography of the afferent connectivity of area 17 in the macaque monkey: A double‐labelling study , 1986, The Journal of comparative neurology.

[212]  Charles D. Gilbert,et al.  Lateral interactions in visual cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[213]  V. Casagrande,et al.  Contrast-sensitivity functions of W-, X-, and Y-like relay cells in the lateral geniculate nucleus of bush baby, Galago crassicaudatus. , 1988, Journal of neurophysiology.

[214]  J. Trojanowski,et al.  Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey , 1976, The Journal of comparative neurology.

[215]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.