An opposition-based memetic algorithm for the maximum quasi-clique problem

Abstract Given a simple undirected graph G = ( V , E ) and a constant γ, the γ-quasi-clique is defined as a subset of vertices that induces a subgraph with the edge density of at least γ. The maximum γ-quasi-clique problem (MQCP) is to find a γ-quasi-clique of the maximum cardinality in G. This problem has many practical applications, especially in social network analysis. We present an opposition-based memetic algorithm (OBMA) for MQCP, which relies on a backbone-based crossover operator to generate new offspring solutions and on a constrained neighborhood tabu search for local improvement. OBMA further integrates the concept of opposition-based learning (OBL) to enhance the search ability of the classic memetic algorithm. Computational results on a large set of both dense and sparse graphs show that the proposed heuristic competes very favorably with the current state-of-the-art algorithms from the MQCP literature. In particular, it is able to find improved best-known solutions for 47 out of the 100 dense graphs, while reaching the best-known solution for all but few of the remaining instances. Several essential components of the proposed approach are investigated to understand their impacts to the algorithm’s performance.

[1]  Béla Bollobás,et al.  Dense subgraphs in random graphs , 2018, Discret. Appl. Math..

[2]  Mark Gerstein,et al.  Predicting interactions in protein networks by completing defective cliques , 2006, Bioinform..

[3]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[4]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[5]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[6]  Shahryar Rahnamayan,et al.  Opposition based learning: A literature review , 2017, Swarm Evol. Comput..

[7]  Xinguo Yu,et al.  A memetic algorithm to pack unequal circles into a square , 2018, Comput. Oper. Res..

[8]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[9]  Patric R. J. Östergård,et al.  Greedy and Heuristic Algorithms for Codes and Colorings , 1998, IEEE Trans. Inf. Theory.

[10]  Sandra Sudarsky,et al.  Massive Quasi-Clique Detection , 2002, LATIN.

[11]  Mauro Brunato,et al.  Cooperating local search for the maximum clique problem , 2011, J. Heuristics.

[12]  Manuel Laguna,et al.  Tabu Search , 1997 .

[13]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[14]  Seyed Taghi Akhavan Niaki,et al.  Opposition-based learning for competitive hub location: A bi-objective biogeography-based optimization algorithm , 2017, Knowl. Based Syst..

[15]  Jin-Kao Hao,et al.  An adaptive multistart tabu search approach to solve the maximum clique problem , 2013, J. Comb. Optim..

[16]  Eduardo L. Pasiliao,et al.  Exact MIP-based approaches for finding maximum quasi-cliques and dense subgraphs , 2016, Comput. Optim. Appl..

[17]  Jin-Kao Hao,et al.  Memetic Algorithms in Discrete Optimization , 2012, Handbook of Memetic Algorithms.

[18]  Jin-Kao Hao,et al.  A tabu search based memetic algorithm for the max-mean dispersion problem , 2016, Comput. Oper. Res..

[19]  Jin-Kao Hao,et al.  Memetic search for the max-bisection problem , 2013, Comput. Oper. Res..

[20]  Balabhaskar Balasundaram,et al.  A branch-and-bound approach for maximum quasi-cliques , 2014, Ann. Oper. Res..

[21]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[22]  Palash Goyal,et al.  Graph Embedding Techniques, Applications, and Performance: A Survey , 2017, Knowl. Based Syst..

[23]  Hamid R. Tizhoosh,et al.  Opposition-Based Learning: A New Scheme for Machine Intelligence , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[24]  Celso C. Ribeiro,et al.  An exact algorithm for the maximum quasi-clique problem , 2019, Int. Trans. Oper. Res..

[25]  Oleg A. Prokopyev,et al.  On maximum degree‐based γ ‐quasi‐clique problem: Complexity and exact approaches , 2018, Networks.

[26]  Celso C. Ribeiro,et al.  A biased random-key genetic algorithm for the maximum quasi-clique problem , 2018, European Journal of Operational Research.

[27]  Christopher C. Moser,et al.  Natural engineering principles of electron tunnelling in biological oxidation–reduction , 1999, Nature.

[28]  Panos M. Pardalos,et al.  On maximum clique problems in very large graphs , 1999, External Memory Algorithms.

[29]  Sergiy Butenko,et al.  Clique Relaxations in Social Network Analysis: The Maximum k-Plex Problem , 2011, Oper. Res..

[30]  Dan Gusfield,et al.  Partition-distance: A problem and class of perfect graphs arising in clustering , 2002, Inf. Process. Lett..

[31]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[32]  Erwin Pesch,et al.  Modelling Robust Flight-Gate Scheduling as a Clique Partitioning Problem , 2008, Transp. Sci..

[33]  Gilbert Laporte,et al.  Heuristics for finding k-clubs in an undirected graph , 2000, Comput. Oper. Res..

[34]  Sergiy Butenko,et al.  On the maximum quasi-clique problem , 2013, Discret. Appl. Math..

[35]  Jin-Kao Hao,et al.  Opposition-Based Memetic Search for the Maximum Diversity Problem , 2017, IEEE Transactions on Evolutionary Computation.

[36]  Mauro Brunato,et al.  On Effectively Finding Maximal Quasi-cliques in Graphs , 2008, LION.

[37]  Li Zhao,et al.  A review of opposition-based learning from 2005 to 2012 , 2014, Eng. Appl. Artif. Intell..

[38]  Chun Chen,et al.  Multiple trajectory search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[39]  Mario Ventresca,et al.  Opposite Transfer Functions and Backpropagation Through Time , 2007, 2007 IEEE Symposium on Foundations of Computational Intelligence.

[40]  Jin-Kao Hao,et al.  A search space "cartography" for guiding graph coloring heuristics , 2010, Comput. Oper. Res..

[41]  Sergiy Butenko,et al.  On clique relaxation models in network analysis , 2013, Eur. J. Oper. Res..

[42]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[43]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[44]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[45]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[46]  Panos M. Pardalos,et al.  An integer programming approach for finding the most and the least central cliques , 2015, Optim. Lett..

[47]  Jin-Kao Hao,et al.  Breakout Local Search for maximum clique problems , 2013, Comput. Oper. Res..

[48]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[49]  C. R. Reeves,et al.  Landscapes, operators and heuristic search , 1999, Ann. Oper. Res..

[50]  Jin-Kao Hao,et al.  A clique-based exact method for optimal winner determination in combinatorial auctions , 2016, Inf. Sci..

[51]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[52]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[53]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[54]  Jin Kiat Chong A novel multi-objective memetic algorithm based on opposition-based self-adaptive differential evolution , 2016, Memetic Comput..

[55]  Ali Akbar Gharaveisi,et al.  Opposition-based discrete action reinforcement learning automata algorithm case study: optimal design of a PID controller , 2013 .

[56]  Thomas Stützle,et al.  Iterated local search for the quadratic assignment problem , 2006, Eur. J. Oper. Res..

[57]  Wilbert E. Wilhelm,et al.  Clique-detection models in computational biochemistry and genomics , 2006, Eur. J. Oper. Res..