Deep learning for camera data acquisition, control, and image estimation

We review the impact of deep-learning technologies on camera architecture. The function of a camera is first to capture visual information and second to form an image. Conventionally, both functions are implemented in physical optics. Throughout the digital age, however, joint design of physical sampling and electronic processing, e.g., computational imaging, has been increasingly applied to improve these functions. Over the past five years, deep learning has radically improved the capacity of computational imaging. Here we briefly review the development of artificial neural networks and their recent intersection with computational imaging. We then consider in more detail how deep learning impacts the primary strategies of computational photography: focal plane modulation, lens design, and robotic control. With focal plane modulation, we show that deep learning improves signal inference to enable faster hyperspectral, polarization, and video capture while reducing the power per pixel by 10−100×. With lens design, deep learning improves multiple aperture image fusion to enable task-specific array cameras. With control, deep learning enables dynamic scene-specific control that may ultimately enable cameras that capture the entire optical data cube (the “light field”), rather than just a focal slice. Finally, we discuss how these three strategies impact the physical camera design as we seek to balance physical compactness and simplicity, information capacity, computational complexity, and visual fidelity.

[1]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[2]  Aggelos K. Katsaggelos,et al.  Deep fully-connected networks for video compressive sensing , 2016, Digit. Signal Process..

[3]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[4]  Thomas Pock,et al.  Learning joint demosaicing and denoising based on sequential energy minimization , 2016, 2016 IEEE International Conference on Computational Photography (ICCP).

[5]  Xin Yuan,et al.  Deep learning for video compressive sensing , 2020, APL Photonics.

[6]  J. N. Mait A History of Imaging: Revisiting the Past to Chart the Future , 2006 .

[7]  Frédo Durand,et al.  Deep joint demosaicking and denoising , 2016, ACM Trans. Graph..

[8]  Vivek Agarwal,et al.  Machine learning approach to color constancy , 2007, Neural Networks.

[9]  Marc Levoy,et al.  The Frankencamera: an experimental platform for computational photography , 2010, SIGGRAPH 2010.

[10]  Zhiliang Hong,et al.  Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera , 2003, IEEE Trans. Consumer Electron..

[11]  P. Dempsey The Teardown: Apple iMac Pro , 2018 .

[12]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[13]  Jean-Michel Morel,et al.  Nonlocal Image and Movie Denoising , 2008, International Journal of Computer Vision.

[14]  Nasser Kehtarnavaz,et al.  Development and real-time implementation of a rule-based auto-focus algorithm , 2003, Real Time Imaging.

[15]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[16]  Peter Pirsch,et al.  VLSI architectures for video compression-a survey , 1995, Proc. IEEE.

[17]  Xin Yuan,et al.  High-speed compressive range imaging based on active illumination. , 2016, Optics express.

[18]  Chang-Yeong Kim,et al.  Fast and accurate auto focusing algorithm based on two defocused images using discrete cosine transform , 2008, Electronic Imaging.

[19]  Ramesh Raskar,et al.  Coded exposure photography: motion deblurring using fluttered shutter , 2006, SIGGRAPH 2006.

[20]  John A. Antoniades,et al.  Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS) , 2008, SPIE Defense + Commercial Sensing.

[21]  Yi-Qing Wang,et al.  A multilayer neural network for image demosaicking , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[22]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[23]  Shree K. Nayar,et al.  PiCam , 2013, ACM Trans. Graph..

[24]  Marshall F. Tappen,et al.  Separable Markov Random Field Model and Its Applications in Low Level Vision , 2013, IEEE Transactions on Image Processing.

[25]  J. A. Parker,et al.  Comparison of Interpolating Methods for Image Resampling , 1983, IEEE Transactions on Medical Imaging.

[26]  Jinhui Tang,et al.  Weakly Supervised Deep Matrix Factorization for Social Image Understanding , 2017, IEEE Transactions on Image Processing.

[27]  Henry Arguello,et al.  Compressive Coded Aperture Spectral Imaging: An Introduction , 2014, IEEE Signal Processing Magazine.

[28]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[29]  C. Ortiz de Solórzano,et al.  Evaluation of autofocus functions in molecular cytogenetic analysis , 1997, Journal of microscopy.

[30]  Tobi Delbruck,et al.  A 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision Sensor , 2014, IEEE Journal of Solid-State Circuits.

[31]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[32]  David Moloney,et al.  Myriad 2: Eye of the computational vision storm , 2014, 2014 IEEE Hot Chips 26 Symposium (HCS).

[33]  Marc Levoy,et al.  High performance imaging using large camera arrays , 2005, SIGGRAPH 2005.

[34]  Lawrence Carin,et al.  Spectral-temporal compressive imaging. , 2015, Optics letters.

[35]  Aggelos K. Katsaggelos,et al.  DeepBinaryMask: Learning a Binary Mask for Video Compressive Sensing , 2016, Digit. Signal Process..

[36]  Lei Zhang,et al.  Color demosaicking via directional linear minimum mean square-error estimation , 2005, IEEE Transactions on Image Processing.

[37]  Ravi Ramamoorthi,et al.  Learning to Synthesize a 4D RGBD Light Field from a Single Image , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  Shiliang Sun,et al.  Multitask Twin Support Vector Machines , 2012, ICONIP.

[39]  Shaowei Jiang,et al.  Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging. , 2018, Biomedical optics express.

[40]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[41]  Jérôme Primot,et al.  Demonstration of an infrared microcamera inspired by Xenos peckii vision. , 2009, Applied optics.

[42]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[43]  Gordon Wetzstein,et al.  Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification , 2018, Scientific Reports.

[44]  Qionghai Dai,et al.  Multiscale gigapixel video: A cross resolution image matching and warping approach , 2017, 2017 IEEE International Conference on Computational Photography (ICCP).

[45]  Kari Pulli,et al.  FlexISP , 2014, ACM Trans. Graph..

[46]  R.W. Schafer,et al.  Demosaicking: color filter array interpolation , 2005, IEEE Signal Processing Magazine.

[47]  Gregory D. Hager,et al.  Combining neural networks and tree search for task and motion planning in challenging environments , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[48]  Giancarlo Calvagno,et al.  Color image demosaicking: An overview , 2011, Signal Process. Image Commun..

[49]  A. Tünnermann,et al.  Thin compound-eye camera. , 2005, Applied optics.

[50]  Ling Wei,et al.  Neural network control of focal position during time-lapse microscopy of cells , 2018, Scientific Reports.

[51]  Daniel L Marks,et al.  Design and scaling of monocentric multiscale imagers. , 2012, Applied optics.

[52]  Touradj Ebrahimi,et al.  The JPEG 2000 still image compression standard , 2001, IEEE Signal Process. Mag..

[53]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[54]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[55]  Pradeep Sen Overview of State-of-the-Art Algorithms for Stack-Based High-Dynamic Range (HDR) Imaging , 2018 .

[56]  Rey-Chue Hwang,et al.  A passive auto-focus camera control system , 2010, Appl. Soft Comput..

[57]  Daniel Kolditz,et al.  Iterative reconstruction methods in X-ray CT. , 2012, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[58]  Craig M. Wittenbrink,et al.  NVIDIA'S Tegra K1 system-on-chip , 2014, 2014 IEEE Hot Chips 26 Symposium (HCS).

[59]  Shan Liu,et al.  Intra Block Copy in HEVC Screen Content Coding Extensions , 2016, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[60]  C. M. Gómez-Sarabia,et al.  Tuning field depth at high resolution by pupil engineering , 2015 .

[61]  Caihua Chen,et al.  Thin infrared imaging systems through multichannel sampling. , 2008, Applied optics.

[62]  Uwe D. Hanebeck,et al.  Template matching using fast normalized cross correlation , 2001, SPIE Defense + Commercial Sensing.

[63]  Sung-Jea Ko,et al.  A novel training based auto-focus for mobile-phone cameras , 2011, IEEE Transactions on Consumer Electronics.

[64]  Jonathan T. Barron,et al.  Burst photography for high dynamic range and low-light imaging on mobile cameras , 2016, ACM Trans. Graph..

[65]  Marc Levoy,et al.  Light Fields and Computational Imaging , 2006, Computer.

[66]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[67]  Oren Kapah,et al.  Demosaicking using artificial neural networks , 2000, Electronic Imaging.

[68]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[69]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Przemys aw liwiński,et al.  A Simple Model for On-Sensor Phase-Detection Autofocusing Algorithm , 2013 .

[71]  Lei Zhang,et al.  FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising , 2017, IEEE Transactions on Image Processing.

[72]  Stephen Lin,et al.  Computational Snapshot Multispectral Cameras: Toward dynamic capture of the spectral world , 2016, IEEE Signal Processing Magazine.

[73]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[74]  Tomoyuki Nishita,et al.  Motion Deblurring from a Single Image using Circular Sensor Motion , 2011, Comput. Graph. Forum.

[75]  P. Dempsey The Teardown: Huawei Mate 10 Pro , 2018 .

[76]  Raanan Fattal,et al.  Image and video upscaling from local self-examples , 2011, TOGS.

[77]  Siavash Yazdanfar,et al.  Simple and robust image-based autofocusing for digital microscopy. , 2008, Optics express.

[78]  Thomas W. Parks,et al.  Joint demosaicing and denoising , 2006, IEEE Trans. Image Process..

[79]  Nathan Hagen,et al.  Multiscale lens design. , 2009, Optics express.

[80]  Wei Wang,et al.  Deep Learning for Single Image Super-Resolution: A Brief Review , 2018, IEEE Transactions on Multimedia.

[81]  Xu Guo,et al.  Fast auto-focusing search algorithm for a high-speed and high-resolution camera based on the image histogram feature function. , 2018, Applied optics.

[82]  Masatoshi Okutomi,et al.  Minimized-Laplacian residual interpolation for color image demosaicking , 2014, Electronic Imaging.

[83]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[84]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[85]  Keechul Jung,et al.  GPU implementation of neural networks , 2004, Pattern Recognit..

[86]  Harry A. Pierson,et al.  Deep learning in robotics: a review of recent research , 2017, Adv. Robotics.

[87]  LiTianrui,et al.  Neural networks letter , 2011 .

[88]  Jan Peters,et al.  Reinforcement learning in robotics: A survey , 2013, Int. J. Robotics Res..

[89]  Lei Zhang,et al.  Image demosaicing: a systematic survey , 2008, Electronic Imaging.

[90]  Jing Wang,et al.  Robust automatic white balance algorithm using gray color points in images , 2006, IEEE Transactions on Consumer Electronics.

[91]  Xin Yuan,et al.  Image translation for single-shot focal tomography , 2015 .

[92]  Masatoshi Okutomi,et al.  Adaptive residual interpolation for color image demosaicking , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[93]  Mark A Neifeld,et al.  Feature-specific imaging. , 2003, Applied optics.

[94]  Octavian Baltag History of Automatic Focusing Reflected by Patents , 2015 .

[95]  Eric R. Fossum,et al.  CMOS image sensors: electronic camera-on-a-chip , 1997 .

[96]  Nasser Kehtarnavaz,et al.  A new auto-focus sharpness function for digital and smart-phone cameras , 2011, 2011 IEEE International Conference on Consumer Electronics (ICCE).

[97]  Shanto Rahman,et al.  An adaptive gamma correction for image enhancement , 2016, EURASIP J. Image Video Process..

[98]  Edmund Y. Lam,et al.  Learning-based nonparametric autofocusing for digital holography , 2018 .

[99]  Robert C. Gibbons,et al.  Design and characterization of thin multiple aperture infrared cameras. , 2009, Applied optics.

[100]  Edward H. Adelson,et al.  A multiresolution spline with application to image mosaics , 1983, TOGS.

[101]  Zhiyong Gao,et al.  Survey on Algorithm and VLSI Architecture for MPEG-Like Video Coder , 2017, J. Signal Process. Syst..

[102]  W.E. Snyder,et al.  Color image processing pipeline , 2005, IEEE Signal Processing Magazine.

[103]  Sudhakar Prasad,et al.  Engineering the pupil phase to improve image quality , 2003, SPIE Defense + Commercial Sensing.

[104]  Meixin Zhu,et al.  Human-Like Autonomous Car-Following Model with Deep Reinforcement Learning , 2018, Transportation Research Part C: Emerging Technologies.

[105]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[106]  Alessandro Foi,et al.  Cross-color BM3D filtering of noisy raw data , 2009, 2009 International Workshop on Local and Non-Local Approximation in Image Processing.

[107]  Mongi A. Abidi,et al.  Evaluation of sharpness measures and search algorithms for the auto focusing of high-magnification images , 2006, SPIE Defense + Commercial Sensing.

[108]  J. Tanida,et al.  Thin Observation Module by Bound Optics (TOMBO): Concept and Experimental Verification. , 2001, Applied optics.

[109]  Chiye Li,et al.  Single-shot compressed ultrafast photography at one hundred billion frames per second , 2014, Nature.

[110]  J Ojeda-Castaneda,et al.  High focal depth by apodization and digital restoration. , 1988, Applied optics.

[111]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[112]  Etienne Perot,et al.  Deep Reinforcement Learning framework for Autonomous Driving , 2017, Autonomous Vehicles and Machines.

[113]  David J. Brady,et al.  Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager , 2012 .

[114]  Peter Corcoran,et al.  Deep Learning for Consumer Devices and Services: Pushing the limits for machine learning, artificial intelligence, and computer vision. , 2017, IEEE Consumer Electronics Magazine.

[115]  Yong Xu,et al.  Enhanced CNN for image denoising , 2018, CAAI Trans. Intell. Technol..

[116]  Indranil Saha,et al.  journal homepage: www.elsevier.com/locate/neucom , 2022 .

[117]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[118]  Il Yong Chun,et al.  Ranging and light field imaging with transparent photodetectors , 2020 .

[119]  Marc P Christensen,et al.  Experimentally validated computational imaging with adaptive multiaperture folded architecture. , 2010, Applied optics.

[120]  Qingming Huang,et al.  Image Saliency Detection Video Saliency Detection Co-saliency Detection Temporal RGBD Saliency Detection Motion , 2018 .

[121]  David J Brady,et al.  Spatial light modulator based color polarization imaging. , 2015, Optics express.

[122]  Suren Jayasuriya,et al.  Reconfiguring the Imaging Pipeline for Computer Vision , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[123]  Yoav Y Schechner,et al.  Depth from diffracted rotation. , 2006, Optics letters.

[124]  Peter Pirsch,et al.  VLSI implementations of image and video multimedia processing systems , 1998, IEEE Trans. Circuits Syst. Video Technol..

[125]  Raja Giryes,et al.  DeepISP: Toward Learning an End-to-End Image Processing Pipeline , 2018, IEEE Transactions on Image Processing.

[126]  Thomas W. Parks,et al.  Adaptive homogeneity-directed demosaicing algorithm , 2005, IEEE Transactions on Image Processing.

[127]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[128]  W T Cathey,et al.  Control of chromatic focal shift through wave-front coding. , 1998, Applied optics.

[129]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[130]  Shree K. Nayar,et al.  Gigapixel Computational Imaging , 2011, 2011 IEEE International Conference on Computational Photography (ICCP).

[131]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[132]  Nasser Kehtarnavaz,et al.  Real-time face-priority auto focus for digital and cell-phone cameras , 2008, IEEE Transactions on Consumer Electronics.

[133]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[134]  Sebastian Nowozin,et al.  Cascades of Regression Tree Fields for Image Restoration , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[135]  Tae Hee Han,et al.  Fast Normalized Cross-Correlation , 2009, Circuits Syst. Signal Process..

[136]  Z M Wu,et al.  Bilateral prediction and intersection calculation autofocus method for automated microscopy , 2012, Journal of microscopy.

[137]  A. Ozcan,et al.  On the use of deep learning for computational imaging , 2019, Optica.

[138]  Gonzalo Muyo,et al.  Decomposition of the optical transfer function: wavefront coding imaging systems. , 2005, Optics letters.

[139]  Lu Fang,et al.  Learning Cross-scale Correspondence and Patch-based Synthesis for Reference-based Super-Resolution , 2017, BMVC.

[140]  Alan Greenaway Adaptive Optics: Astronomy and Beyond , 2006 .

[141]  Mohan Shankar,et al.  Compressive video sensors using multichannel imagers. , 2010, Applied optics.

[142]  Gary J. Sullivan,et al.  Rate-distortion optimization for video compression , 1998, IEEE Signal Process. Mag..

[143]  Joshi Neel,et al.  画像の例を用いた個人写真の強調 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2010 .

[144]  Brian V. Funt,et al.  A comparison of computational color constancy algorithms. I: Methodology and experiments with synthesized data , 2002, IEEE Trans. Image Process..

[145]  Guido Schuster,et al.  High spatio-temporal resolution video with compressed sensing. , 2015, Optics express.

[146]  Kyoung Mu Lee,et al.  Enhanced Deep Residual Networks for Single Image Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[147]  N George,et al.  Electronic imaging using a logarithmic asphere. , 2001, Optics letters.

[148]  Hiroshi Takahashi,et al.  A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[149]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[150]  David J. Brady,et al.  Multiscale gigapixel photography , 2012, Nature.

[151]  Hans-Peter Seidel,et al.  Luminance-contrast-aware foveated rendering , 2019, ACM Trans. Graph..

[152]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[153]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[154]  Andrew W. Fitzgibbon,et al.  Joint Demosaicing and Denoising via Learned Nonparametric Random Fields , 2014, IEEE Transactions on Image Processing.

[155]  Kemal Ugur,et al.  Intra Coding of the HEVC Standard , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[156]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[157]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[158]  Yuan Zhang,et al.  Adaptive color image watermarking based on the just noticeable distortion model in balanced multiwavelet domain , 2011, J. Electronic Imaging.

[159]  E R Dowski,et al.  Realizations of focus invariance in optical-digital systems with wave-front coding. , 1997, Applied optics.

[160]  Brian A. Wandell,et al.  A case for denoising before demosaicking color filter array data , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[161]  Claudio Cusano,et al.  Single and Multiple Illuminant Estimation Using Convolutional Neural Networks , 2015, IEEE Transactions on Image Processing.

[162]  Steve Mann,et al.  Virtual bellows: constructing high quality stills from video , 1994, Proceedings of 1st International Conference on Image Processing.

[163]  Yung-Cheng Liu,et al.  Automatic white balance for digital still camera , 1995 .

[164]  Daniel L Marks,et al.  Coding for compressive focal tomography. , 2011, Applied optics.

[165]  Guillermo Sapiro,et al.  Coded aperture compressive temporal imaging , 2013, Optics express.

[166]  Luc Van Gool,et al.  Conditional Probability Models for Deep Image Compression , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[167]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[168]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[169]  Yang Zhao,et al.  Heterogeneous camera array for multispectral light field imaging. , 2017, Optics express.

[170]  Marc Levoy,et al.  Handheld multi-frame super-resolution , 2019, ACM Trans. Graph..

[171]  David J. Brady,et al.  Distributed Focus and Digital Zoom. , 2019 .

[172]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[173]  Yunjin Chen,et al.  Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[174]  Craig K. Rushforth,et al.  Image gathering and processing for enhanced resolution , 1984 .

[175]  Bernhard Rinner,et al.  Dynamic Reconfiguration in Camera Networks: A Short Survey , 2016, IEEE Transactions on Circuits and Systems for Video Technology.

[176]  Lei Zhang,et al.  Nonlocally Centralized Sparse Representation for Image Restoration , 2013, IEEE Transactions on Image Processing.

[177]  Yochai Blau,et al.  The Perception-Distortion Tradeoff , 2017, CVPR.

[178]  Jun Tanida,et al.  Multispectral imaging using compact compound optics. , 2004, Optics express.

[179]  Chang Dong Yoo,et al.  Robust video fingerprinting for content-based video identification , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[180]  Zhihai Xu,et al.  Fast auto-focus scheme based on optical defocus fitting model , 2018 .

[181]  Xin Yuan,et al.  Snapshot spatial-temporal compressive imaging. , 2020, Optics letters.

[182]  Edward J. Delp,et al.  Deepfake Video Detection Using Recurrent Neural Networks , 2018, 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[183]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[184]  David Isele,et al.  Navigating Occluded Intersections with Autonomous Vehicles Using Deep Reinforcement Learning , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[185]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[186]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.