Physical Origin of Biological Propulsion and Inspiration for Underwater Robotic Applications

.......................................................................................................................................... ii Dedication ..................................................................................................................................... vii Acknowledgments ...................................................................................................................... viii Vita.................................................................................................................................................. ix Statement of Contributions ........................................................................................................ xii List of Tables ............................................................................................................................... xvii List of Figures ............................................................................................................................ xviii : Introduction to Bioinspired Underwater Robot ..................................................... 1 1.1. Background for Bioinspired Underwater Robots .......................................................... 1 1.2. Design an Efficient Underwater Robot from Biological Propulsion ............................ 4 1.2.1. Research Approach for the Bioinspired Underwater Robot ................................ 5 1.2.2. Bioinspired Swimming Robot Design ...................................................................... 7 1.2.2. Integration ................................................................................................................. 39 1.2.3. Experiment and Iterative Design ............................................................................ 41 1.3. Summary ........................................................................................................................... 43 : Design of Efficient Propulsion for Nanorobots ................................................... 45 2.

[1]  Shashank Priya,et al.  A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators , 2011, Bioinspiration & biomimetics.

[2]  C. Eloy,et al.  Shape of optimal active flagella , 2013, Journal of Fluid Mechanics.

[3]  H. Kurokawa,et al.  Automatic locomotion design and experiments for a Modular robotic system , 2005, IEEE/ASME Transactions on Mechatronics.

[4]  Guodong Yin,et al.  Stabilizing Vehicle Lateral Dynamics with Considerations of State Delay of AFS for Electric Vehicles via Robust Gain‐Scheduling Control , 2016 .

[5]  John A. Miller Studies in the Biology of the Leech. III, The Influences of Change in Temperature upon Locomotion , 1934 .

[6]  M. Triantafyllou,et al.  An Efficient Swimming Machine , 1995 .

[7]  Xiaobo Li,et al.  Hybrid Control for Micro/­Nano Devices and Systems , 2013 .

[8]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[9]  Auke Jan Ijspeert,et al.  Online Optimization of Swimming and Crawling in an Amphibious Snake Robot , 2008, IEEE Transactions on Robotics.

[10]  Chunlin Zhou,et al.  Design and Locomotion Control of a Biomimetic Underwater Vehicle With Fin Propulsion , 2012, IEEE/ASME Transactions on Mechatronics.

[11]  Jonas Neubert,et al.  Self-Soldering Connectors for Modular Robots , 2014, IEEE Transactions on Robotics.

[12]  Jacques E. Schoutens Prediction of Elastic Properties of Sperm Flagella , 1994 .

[13]  Byungkyu Kim,et al.  A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators , 2005 .

[14]  Kai Xiao,et al.  A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin , 2008 .

[15]  Antoine Ferreira,et al.  MRI-guided nanorobotic systems for therapeutic and diagnostic applications. , 2011, Annual review of biomedical engineering.

[16]  Paul W. Webb,et al.  Simple Physical Principles and Vertebrate Aquatic Locomotion , 1988 .

[17]  Rossi Passarella,et al.  CFD Analysis for Merdeka 2 Solar Vehicle , 2011 .

[18]  E. Purcell Life at Low Reynolds Number , 2008 .

[19]  Jérôme Casas,et al.  The management of fluid and wave resistances by whirligig beetles , 2010, Journal of The Royal Society Interface.

[20]  Adrian L. R. Thomas,et al.  Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency , 2003, Nature.

[21]  Tetsuya Iwasaki,et al.  Biological clockwork underlying adaptive rhythmic movements , 2014, Proceedings of the National Academy of Sciences.

[22]  M. A. MacIver,et al.  Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor , 2011, Bioinspiration & biomimetics.

[23]  Mutsuto Kawahara,et al.  Optimal shape determination of a body located in incompressible viscous fluid flow , 2007 .

[24]  Kristi A. Morgansen,et al.  Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[25]  Robert W. Blake,et al.  Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1. Biological background, and analysis by elongated-body theory , 1990, Journal of Fluid Mechanics.

[26]  Y. Imaizumi,et al.  Propulsion system with flexible/rigid oscillating fin , 1995 .

[27]  Metin Sitti,et al.  Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments , 2007, IEEE Transactions on Robotics.

[28]  P W Webb,et al.  Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics. , 2001, The Journal of experimental biology.

[29]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[30]  A. Cavalcanti,et al.  Nanorobotics control design: a collective behavior approach for medicine , 2005, IEEE Transactions on NanoBioscience.

[31]  Tetsuya Asai,et al.  An analog CMOS central pattern generator for interlimb coordination in quadruped locomotion , 2003, IEEE Trans. Neural Networks.

[32]  Kamran Mohseni,et al.  Bioinspired Hydrodynamic Force Feedforward for Autonomous Underwater Vehicle Control , 2014, IEEE/ASME Transactions on Mechatronics.

[33]  Mingjun Zhang,et al.  Design of Efficient Propulsion for Nanorobots , 2014, IEEE Transactions on Robotics.

[34]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[35]  M. Triantafyllou,et al.  Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion , 1993 .

[36]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[37]  W. O. Friesen,et al.  Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming , 2011, Journal of Experimental Biology.

[38]  Frank E. Fish,et al.  Transitions from Drag-based to Lift-based Propulsion in Mammalian Swimming , 1996 .

[39]  Wayne L. Neu,et al.  Hydrodynamic analysis, performance assessment, and actuator design of a flexible tail propulsor in an artificial alligator , 2011 .

[40]  A. Cohen,et al.  Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming , 2010, Proceedings of the National Academy of Sciences.

[41]  Daniel Koditschek,et al.  Quantifying Dynamic Stability and Maneuverability in Legged Locomotion1 , 2002, Integrative and comparative biology.

[42]  M. Lighthill Hydromechanics of Aquatic Animal Propulsion , 1969 .

[43]  Andrej Vilfan,et al.  Optimal shapes of surface slip driven self-propelled microswimmers. , 2012, Physical review letters.

[44]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[45]  John T. Beneski,et al.  Two- and three-dimensional geometries of batoids in relation to locomotor mode , 2013 .

[46]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[47]  Toshio Fukuda,et al.  Construction and evaluation of bacteria-driven liposome , 2013 .

[48]  M. Lighthill Large-amplitude elongated-body theory of fish locomotion , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  David Nitzan,et al.  Three-Dimensional Vision Structure for Robot Applications , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Crispin Hales,et al.  Engineering design: a systematic approach , 1989 .

[51]  Eric Lauga,et al.  Optimal propulsive flapping in Stokes flows , 2014, Bioinspiration & biomimetics.

[52]  G. Fedder,et al.  Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope , 2003 .

[53]  E. Lobaton,et al.  A study of bacterial flagellar bundling , 2005, Bulletin of mathematical biology.

[54]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[55]  J. Liao,et al.  A review of fish swimming mechanics and behaviour in altered flows , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[56]  G. Lauder,et al.  Passive and Active Flow Control by Swimming Fishes and Mammals , 2006 .

[57]  Frank E Fish,et al.  Aquatic turning performance by the whirligig beetle: constraints on maneuverability by a rigid biological system , 2003, Journal of Experimental Biology.

[58]  V A Tucker Wave-Making by Whirligig Beetles (Gyrinidae) , 1969, Science.

[59]  Y. Hiramoto,et al.  Flexural rigidity of echinoderm sperm flagella. , 1994, Cell structure and function.

[60]  Mingjun Zhang,et al.  Evolutionary game based control for biological systems with applications in drug delivery. , 2013, Journal of theoretical biology.

[61]  S. N. Avvakumov,et al.  Boundary Value Problems for Ordinary Differential Equations with Applications to Optimal Control , 2000 .

[62]  Werner Nachtigall,et al.  Funktionelle Morphologie, Kinematik und Hydromechanik des Ruderapparates von Gyrinus , 1961, Zeitschrift für vergleichende Physiologie.

[63]  Guodong Yin,et al.  Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique , 2015 .

[64]  Tamara A. Knutsen,et al.  DESIGNING AN UNDERWATER EEL-LIKE ROBOT AND DEVELOPING ANGUILLIFORM LOCOMOTION , 2001 .

[65]  D Mathur,et al.  Optically-controllable, micron-sized motor based on live cells. , 2005, Optics express.

[66]  Auke Jan Ijspeert,et al.  AmphiBot I: an amphibious snake-like robot , 2005, Robotics Auton. Syst..

[67]  Xiaobo Tan,et al.  Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin , 2010, IEEE/ASME Transactions on Mechatronics.

[68]  Heinz Bendele,et al.  Mechanosensory cues control chasing behaviour of whirligig beetles (Coleoptera, Gyrinidae) , 1986, Journal of Comparative Physiology A.

[69]  J. Gray Studies in Animal Locomotion , 1936 .

[70]  Luke P. Lee,et al.  Biologically Inspired Artificial Compound Eyes , 2006, Science.

[71]  Guodong Yin,et al.  Gain-Scheduled Vehicle Handling Stability Control Via Integration of Active Front Steering and Suspension Systems , 2016 .

[72]  S. Misra,et al.  MagnetoSperm: A microrobot that navigates using weak magnetic fields , 2014 .

[73]  Promode R Bandyopadhyay,et al.  Maneuvering Hydrodynamics of Fish and Small Underwater Vehicles1 , 2002, Integrative and comparative biology.

[74]  Zhenyuan Jia,et al.  An improved online dimensional measurement method of large hot cylindrical forging , 2012 .

[75]  Kyu-Jin Cho,et al.  Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin , 2012, IEEE Transactions on Robotics.

[76]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[77]  A. Ijspeert,et al.  From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model , 2007, Science.

[78]  Christopher J. Esposito,et al.  A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance , 2012, Journal of Experimental Biology.

[79]  Zhenyuan Jia,et al.  An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film , 2010 .

[80]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[81]  Jia Xinghua Study on On-line Measurement System of Dimension for Hot Heavy Forging , 2011 .

[82]  William F. Humphreys,et al.  EVOLUTION OF SUBTERRANEAN DIVING BEETLES (COLEOPTERA: DYTISCIDAE: HYDROPORINI, BIDESSINI) IN THE ARID ZONE OF AUSTRALIA , 2003 .

[83]  Bharat Bhushan,et al.  Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity , 2011, Beilstein journal of nanotechnology.

[84]  L. Shampine,et al.  A BVP Solver that Controls Residual and Error 1 , 2008 .

[85]  Shahin Sefati,et al.  Mutually opposing forces during locomotion can eliminate the tradeoff between maneuverability and stability , 2013, Proceedings of the National Academy of Sciences.

[86]  Aydogan Ozcan,et al.  High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories , 2012, Proceedings of the National Academy of Sciences.

[87]  Koji Tsuyuki,et al.  Swimming behavior of small diving beetles , 2006 .

[88]  J. Manter,et al.  The mechanics of swimming in the alligator , 1940 .

[89]  George V Lauder,et al.  Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure , 2011, Proceedings of the Royal Society B: Biological Sciences.

[90]  Mattia Gazzola,et al.  Gait and speed selection in slender inertial swimmers , 2015, Proceedings of the National Academy of Sciences.

[91]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[92]  Oriane Bonhomme,et al.  Elastic instability in stratified core annular flow. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Andrew Hogue,et al.  AQUA: An Amphibious Autonomous Robot , 2007, Computer.

[94]  John T. Beneski,et al.  Death roll of the alligator: mechanics of twist feeding in water , 2007, Journal of Experimental Biology.

[95]  Philip Greenway Body form and behavioural types in fish , 2005, Experientia.

[96]  Auke Jan Ijspeert,et al.  Salamandra Robotica II: An Amphibious Robot to Study Salamander-Like Swimming and Walking Gaits , 2013, IEEE Transactions on Robotics.

[97]  Metin Sitti,et al.  Microscale and nanoscale robotics systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[98]  Zhengyuan Jia,et al.  Fast dimensional measurement method and experiment of the forgings under high temperature , 2011 .

[99]  Alexandre M. Bayen,et al.  Modeling and Optimization Analysis of a Single-Flagellum Micro-Structure Through the Method of Regularized Stokeslets , 2009, IEEE Transactions on Control Systems Technology.

[100]  Chien Chern Cheah,et al.  Adaptive Tracking Control for Robots with Unknown Kinematic and Dynamic Properties , 2006, Int. J. Robotics Res..

[101]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[102]  Jan Osburg,et al.  U.S. Navy Employment Options for Unmanned Surface Vehicles (Usvs) , 2014 .

[103]  C. Wiggins,et al.  Trapping and wiggling: elastohydrodynamics of driven microfilaments. , 1997, Biophysical journal.

[104]  G. Lauder,et al.  The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street , 2003, Journal of Experimental Biology.

[105]  Sung-Weon Yeom,et al.  A biomimetic jellyfish robot based on ionic polymer metal composite actuators , 2009 .

[106]  Tatsuo Kawai,et al.  Optimum shape of a flagellated microorganism , 2001 .

[107]  C. Lowe,et al.  A simulation study of the dynamics of a driven filament in an Aristotelian fluid. , 2002, Journal of theoretical biology.

[108]  Rajat Mittal,et al.  The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin , 2010, Journal of Experimental Biology.

[109]  Jia Xing-hua A method for extracting center-lines of structured light stripes in process of dimension measurement of large forgings , 2012 .

[110]  George V. Lauder,et al.  Hydrodynamics of Undulatory Propulsion , 2005 .

[111]  T. Hung Life in Moving Fluids—The physical biology of flow , 1988 .

[112]  Frank E. Fish,et al.  Kinematics of undulatory swimming in the american alligator , 1984 .

[113]  G. Lauder,et al.  Biomimetic shark skin: design, fabrication and hydrodynamic function , 2014, Journal of Experimental Biology.

[114]  William R. Henson,et al.  High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites , 2011, Proceedings of the National Academy of Sciences.

[115]  Anders N. Nilsson,et al.  Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Nearctic Region, with emphasis on the fauna of Canada and Alaska , 2000 .

[116]  Eric D Tytell,et al.  The hydrodynamics of eel swimming II. Effect of swimming speed , 2004, Journal of Experimental Biology.

[117]  Michael Sfakiotakis,et al.  Review of fish swimming modes for aquatic locomotion , 1999 .

[118]  Xiaobo Tan,et al.  Monolithic fabrication of ionic polymer–metal composite actuators capable of complex deformation , 2010 .

[119]  Chunlin Zhou,et al.  Better Endurance and Load Capacity: An Improved Design of Manta Ray Robot (RoMan-II) , 2010 .

[120]  E A Gaffney,et al.  Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. , 2009, Cell motility and the cytoskeleton.

[121]  Mingjun Zhang,et al.  Experimental Studies and Dynamics Modeling Analysis of the Swimming and Diving of Whirligig Beetles (Coleoptera: Gyrinidae) , 2012, PLoS Comput. Biol..

[122]  K E Drexler,et al.  Molecular engineering: An approach to the development of general capabilities for molecular manipulation. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[123]  K. Mohseni,et al.  Thrust Characterization of a Bioinspired Vortex Ring Thruster for Locomotion of Underwater Robots , 2008, IEEE Journal of Oceanic Engineering.

[124]  Franz S. Hover,et al.  Effect of angle of attack profiles in flapping foil propulsion , 2004 .

[125]  G. Bessonnet,et al.  Optimal Motion Synthesis – Dynamic Modelling and Numerical Solving Aspects , 2002 .

[126]  Jack W. Judy,et al.  Microelectromechanical systems (MEMS): fabrication, design and applications , 2001 .

[127]  J. Engel,et al.  Two-Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies , 2003 .

[128]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.