Monotone Boolean formulas can approximate monotone linear threshold functions
暂无分享,去创建一个
[1] E. Szemerédi,et al. O(n LOG n) SORTING NETWORK. , 1983 .
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] V. Statulevičius,et al. Limit Theorems of Probability Theory , 2000 .
[4] Marek Karpinski,et al. Simulating Threshold Circuits by Majority Circuits , 1998, SIAM J. Comput..
[5] M. Sipser,et al. Monotone complexity , 1992 .
[6] Andrew Chi-Chih Yao. Circuits and local computation , 1989, STOC '89.
[7] Michael Sipser,et al. Boolean Function Complexity: Monotone Complexity , 1992 .
[8] I. Benjamini,et al. Noise sensitivity of Boolean functions and applications to percolation , 1998 .
[9] E. Szemerédi,et al. Sorting inc logn parallel steps , 1983 .
[10] Alexander A. Razborov,et al. Majority gates vs. general weighted threshold gates , 2005, computational complexity.
[11] Wolfgang Härdle,et al. Partially Linear Models , 2000 .
[12] Saburo Muroga,et al. Threshold logic and its applications , 1971 .
[13] V. V. Petrov,et al. Limit Theorems of Probability Theory , 2000 .
[14] János Komlós,et al. An 0(n log n) sorting network , 1983, STOC.
[15] Leslie G. Valiant,et al. Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.
[16] Johan Håstad,et al. On the Size of Weights for Threshold Gates , 1994, SIAM J. Discret. Math..