Image statistics and their processing in insect vision.

Natural scenes may appear random, but are not only constrained in space and time, but also show strong spatial and temporal correlations. Spatial constraints and correlations can be described by quantifying image statistics, which include intuitive measures such as contrast, color and luminance, but also parameters that need some type of transformation of the image. In this review we will discuss some common tools used to quantify spatial and temporal parameters of naturalistic visual input, and how these tools have been used to inform us about visual processing in insects. In particular, we will review findings that would not have been possible using conventional, experimenter defined stimuli.

[1]  Joseph J Atick,et al.  Could information theory provide an ecological theory of sensory processing? , 2011, Network.

[2]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[3]  J. Sanes,et al.  Design Principles of Insect and Vertebrate Visual Systems , 2010, Neuron.

[4]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[5]  A. Straw,et al.  A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity , 2006, Journal of Experimental Biology.

[6]  Michael B. Reiser,et al.  Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.

[7]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[8]  D. Tolhurst,et al.  Amplitude spectra of natural images , 1992 .

[9]  A. Borst,et al.  Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector , 2016, Neuron.

[10]  S. Yajima,et al.  Extraordinary diversity of visual opsin genes in dragonflies , 2015, Proceedings of the National Academy of Sciences.

[11]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[12]  J. H. Hateren,et al.  Information theoretical evaluation of parametric models of gain control in blowfly photoreceptor cells , 2001, Vision Research.

[13]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  D. Field,et al.  Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes , 1997, Vision Research.

[15]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[16]  Eng-Leng Mah,et al.  Photoreceptor processing improves salience facilitating small target detection in cluttered scenes. , 2008, Journal of vision.

[17]  Damon A. Clark,et al.  Parallel Computations in Insect and Mammalian Visual Motion Processing , 2016, Current Biology.

[18]  D J Field,et al.  Local Contrast in Natural Images: Normalisation and Coding Efficiency , 2000, Perception.

[19]  R O Dror,et al.  Accuracy of velocity estimation by Reichardt correlators. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[21]  James E. Fitzgerald,et al.  Symmetries in stimulus statistics shape the form of visual motion estimators , 2011, Proceedings of the National Academy of Sciences.

[22]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[23]  Karin Nordström,et al.  Novel Flicker-Sensitive Visual Circuit Neurons Inhibited by Stationary Patterns , 2013, The Journal of Neuroscience.

[24]  Qin Hu,et al.  Two-Dimensional Hermite Filters Simplify the Description of High-Order Statistics of Natural Images , 2016, bioRxiv.

[25]  D. O’Carroll,et al.  Rapid contrast gain reduction following motion adaptation , 2011, Journal of Experimental Biology.

[26]  T. S. Collett,et al.  Visual spatial memory in a hoverfly , 2004, Journal of comparative physiology.

[27]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[28]  Zhuoyi Song,et al.  Refractory Sampling Links Efficiency and Costs of Sensory Encoding to Stimulus Statistics , 2014, The Journal of Neuroscience.

[29]  A. Straw,et al.  Contrast sensitivity of insect motion detectors to natural images. , 2008, Journal of vision.

[30]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[31]  Paul D. Barnett,et al.  Motion Adaptation and the Velocity Coding of Natural Scenes , 2010, Current Biology.

[32]  J. H. van Hateren,et al.  Real and optimal neural images in early vision , 1992, Nature.

[33]  P. Bex,et al.  Spatial frequency, phase, and the contrast of natural images. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  V. Kiselev,et al.  A higher order visual neuron tuned to the spatial amplitude spectra of natural scenes , 2015, Nature Communications.

[35]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[36]  Erik Reinhard,et al.  A Survey of Image Statistics Relevant to Computer Graphics , 2011, Comput. Graph. Forum.

[37]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[38]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[39]  Karin Nordström,et al.  Octopaminergic modulation of contrast sensitivity , 2012, Front. Integr. Neurosci..

[40]  James E. Fitzgerald,et al.  Nonlinear circuits for naturalistic visual motion estimation , 2015, eLife.

[41]  Aljoscha Nern,et al.  The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila , 2017, eLife.

[42]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[43]  David C. O'Carroll,et al.  Contrast sensitivity and the detection of moving patterns and features , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[45]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[46]  Paul Graham,et al.  Insect Vision: Emergence of Pattern Recognition from Coarse Encoding , 2014, Current Biology.

[47]  David C. O'Carroll,et al.  Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology , 2009, PLoS Comput. Biol..

[48]  M. Heisenberg,et al.  Attracting the attention of a fly , 2011, Proceedings of the National Academy of Sciences.

[49]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[50]  Adam P. Morris,et al.  The (un)suitability of modern liquid crystal displays (LCDs) for vision research , 2015, Front. Psychol..

[51]  V. Hateren,et al.  Processing of natural time series of intensities by the visual system of the blowfly , 1997, Vision Research.

[52]  Antonio Torralba,et al.  Statistics of natural image categories , 2003, Network.

[53]  Patrick M. Lu,et al.  Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila , 2015, The Journal of Neuroscience.

[54]  G A Horridge,et al.  The separation of visual axes in apposition compound eyes. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  Andriana Olmos,et al.  A biologically inspired algorithm for the recovery of shading and reflectance images , 2004 .

[56]  T. J. Wardill,et al.  Multiple Spectral Inputs Improve Motion Discrimination in the Drosophila Visual System , 2012, Science.

[57]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[58]  Konstantina Papagiannaki,et al.  Guest editoria: Wireless mesh networks: Applications, architectures, and protocols , 2008 .

[59]  Michael R Ibbotson,et al.  Applicability of white-noise techniques to analyzing motion responses. , 2010, Journal of neurophysiology.

[60]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[61]  Justin M. Ales,et al.  Flies and humans share a motion estimation strategy that exploits natural scene statistics , 2014, Nature Neuroscience.

[62]  Erik Reinhard,et al.  Image Statistics and their Applications in Computer Graphics , 2010, Eurographics.

[63]  M. Egelhaaf,et al.  Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths , 2005, Journal of Comparative Physiology A.

[64]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[65]  Alexander Borst,et al.  Spatiotemporal Response Properties of Optic-Flow Processing Neurons , 2010, Neuron.

[66]  J. P. Lindemann,et al.  Temporal Statistics of Natural Image Sequences Generated by Movements with Insect Flight Characteristics , 2014, PloS one.

[67]  Zhuoyi Song,et al.  How a fly photoreceptor samples light information in time , 2017, The Journal of physiology.

[68]  Mark A. Frye,et al.  Figure Tracking by Flies Is Supported by Parallel Visual Streams , 2012, Current Biology.

[69]  R. Santer Motion dazzle: a locust's eye view , 2013, Biology Letters.

[70]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[71]  Computational neuroscience: Species-specific motion detectors , 2016, Nature.

[72]  Saskia E. J. de Vries,et al.  Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System , 2012, Current Biology.

[73]  W A Richards,et al.  Lightness scale from image intensity distributions. , 1981, Applied optics.

[74]  Mikko Vähäsöyrinki,et al.  A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments , 2012, Scientific Reports.

[75]  B. Kimmerle,et al.  Object detection in the fly during simulated translatory flight , 1997, Journal of Comparative Physiology A.

[76]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.