Relational Temporal Data Mining for Wireless Sensor Networks

Wireless sensor networks (WSNs) represent a typical domain where there are complex temporal sequences of events. In this paper we propose a relational framework to model and analyse the data observed by sensor nodes of a wireless sensor network. In particular, we extend a general purpose relational sequence mining algorithm to take into account temporal interval-based relations. Real-valued time series are discretized into similar subsequences and described by using a relational language. Preliminary experimental results prove the applicability of the relational learning framework to complex real world temporal data.

[1]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[2]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.

[3]  Jeffrey D. Uuman Principles of database and knowledge- base systems , 1989 .

[4]  Frank Höppner,et al.  Learning Dependencies in Multivariate Time Series , 2008 .

[5]  Frank Höppner,et al.  Knowledge discovery from sequential data , 2003 .

[6]  Ada Wai-Chee Fu,et al.  Discovering Temporal Patterns for Interval-Based Events , 2000, DaWaK.

[7]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[8]  Donato Malerba,et al.  An ILP Method for Spatial Association Rule Mining , 2001 .

[9]  Gaurav S. Sukhatme,et al.  Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..

[10]  Dimitrios Gunopulos,et al.  Discovering frequent arrangements of temporal intervals , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[11]  Max J. Egenhofer,et al.  Advances in Spatial Databases , 1997, Lecture Notes in Computer Science.

[12]  Hendrik Blockeel,et al.  From Shell Logs to Shell Scripts , 2001, ILP.

[13]  Andreas D. Lattner,et al.  Unsupervised Learning of Sequential Patterns , 2004 .

[14]  Andreas D. Lattner,et al.  Mining Temporal Patterns from Relational Data , 2005, LWA.

[15]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[16]  Jeffrey D. Ullman,et al.  Principles of Database and Knowledge-Base Systems, Volume II , 1988, Principles of computer science series.

[17]  P. S. Sastry,et al.  Generalized frequent episodes in Event Sequences , 2002 .

[18]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[19]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[20]  Stefano Ferilli,et al.  Multi-Dimensional Relational Sequence Mining , 2008, Fundam. Informaticae.