Finite element model updating of an 18-story structure using branch-and-bound algorithm with epsilon-constraint

This paper studies the finite element (FE) model updating of an 18-story experimental structure. FE model updating requires solving optimization problems that are generally non-convex and have unknown number of local optima. For such problems, neither randomized local optimization algorithms nor stochastic search algorithms can guarantee global optimality. To obtain the global optimum and improve the accuracy of FE model updating, this paper proposes the branch-and-bound (B&B) algorithm for solving non-convex optimization problems in FE model updating. The paper focuses on the modal property difference formulation that minimizes the difference between experimental and simulated eigenvalues and eigenvectors. We propose a reformulation of the modal property difference approach using epsilon-constraint, to enable the application of the B&B algorithm in FE model updating. The proposed approach is first investigated in simulation and compared with the interior-point method and the genetic algorithm. The model updating results using the B&B algorithm are next validated by the shaking table test data of an 18-story steel frame structure.

[1]  Ka-Veng Yuen,et al.  Bayesian Methods for Updating Dynamic Models , 2011 .

[2]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[3]  Myun-Seok Cheon,et al.  Solving Mixed Integer Bilinear Problems Using MILP Formulations , 2013, SIAM J. Optim..

[4]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[5]  F. Hemez,et al.  Updating finite element dynamic models using an element-by-element sensitivity methodology , 1993 .

[6]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[7]  W. Marsden I and J , 2012 .

[8]  James M. Ricles,et al.  Damage Detection in Structures by Modal Vibration Characterization , 1999 .

[9]  Zhongqing Su,et al.  Structural damage detection using finite element model updating with evolutionary algorithms: a survey , 2017, Neural Computing and Applications.

[10]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[11]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[12]  Andrew W. Smyth,et al.  Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters , 2017 .

[13]  Olof Friberg,et al.  Updating Large Finite Element Models in Structural Dynamics , 1998 .

[14]  Michael G. Safonov,et al.  Global optimization for the Biaffine Matrix Inequality problem , 1995, J. Glob. Optim..

[15]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[16]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[17]  D. Chmielewski,et al.  On the theory of optimal sensor placement , 2002 .

[18]  Santanu S. Dey,et al.  New SOCP relaxation and branching rule for bipartite bilinear programs , 2018, Optimization and Engineering.

[19]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[20]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[21]  Ian F. C. Smith,et al.  Data-Interpretation Methodologies for Non-Linear Earthquake Response Predictions of Damaged Structures , 2017, Front. Built Environ..

[22]  Johan A. K. Suykens,et al.  Global optimization by coupled local minimizers and its application to FE model updating , 2003 .

[23]  P. G. Bakir,et al.  An improved finite element model updating method by the global optimization technique 'Coupled Local Minimizers' , 2008 .

[24]  Babak Moaveni,et al.  Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification , 2016 .

[25]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[26]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[27]  Stephen P. Boyd,et al.  Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems , 1991, International Journal of Robust and Nonlinear Control.

[28]  Ka-Veng Yuen Updating large models for mechanical systems using incomplete modal measurement , 2012 .

[29]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[30]  Yang Wang,et al.  Model Updating Using Sum of Squares (SOS) Optimization to Minimize Modal Dynamic Residuals , 2017 .

[31]  Neil Genzlinger A. and Q , 2006 .

[32]  Dapeng Zhu,et al.  Substructure Stiffness and Mass Updating through Minimization of Modal Dynamic Residuals , 2016 .

[33]  Yang Wang,et al.  Modal dynamic residual-based model updating through regularized semidefinite programming with facial reduction , 2020 .

[34]  Gaurav S. Sukhatme,et al.  Branch and bound for informative path planning , 2012, 2012 IEEE International Conference on Robotics and Automation.

[35]  G. Vanderplaats,et al.  Survey of Discrete Variable Optimization for Structural Design , 1995 .

[36]  O. S. Salawu Detection of structural damage through changes in frequency: a review , 1997 .

[37]  C. Papadimitriou,et al.  Structural identification based on optimally weighted modal residuals , 2007 .

[38]  Junjie Li,et al.  Structural inverse analysis by hybrid simplex artificial bee colony algorithms , 2009 .

[39]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[40]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .

[41]  Joel P. Conte,et al.  A dual adaptive filtering approach for nonlinear finite element model updating accounting for modeling uncertainty , 2019, Mechanical Systems and Signal Processing.

[42]  Paul Sas,et al.  Uniqueness aspects of model-updating procedures , 1989 .

[43]  Jerome P. Lynch,et al.  A PROBABILISTIC MODEL UPDATING ALGORITHM FOR FATIGUE DAMAGE DETECTION IN ALUMINUM HULL STRUCTURES , 2010 .

[44]  Yang Wang,et al.  Sparse Sum-of-Squares Optimization for Model Updating Through Minimization of Modal Dynamic Residuals , 2019, Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems.

[45]  Wei-Xin Ren,et al.  Damage detection by finite element model updating using modal flexibility residual , 2006 .

[46]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[47]  Nicholas A J Lieven,et al.  DYNAMIC FINITE ELEMENT MODEL UPDATING USING SIMULATED ANNEALING AND GENETIC ALGORITHMS , 1997 .

[48]  Yang Wang,et al.  Modal property difference formulations and optimization algorithm comparison towards FE model updating , 2018, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[49]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[50]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..