SPONGEdb: a pan-cancer resource for competing endogenous RNA interactions

Abstract microRNAs (miRNAs) are post-transcriptional regulators involved in many biological processes and human diseases, including cancer. The majority of transcripts compete over a limited pool of miRNAs, giving rise to a complex network of competing endogenous RNA (ceRNA) interactions. Currently, gene-regulatory networks focus mostly on transcription factor-mediated regulation, and dedicated efforts for charting ceRNA regulatory networks are scarce. Recently, it became possible to infer ceRNA interactions genome-wide from matched gene and miRNA expression data. Here, we inferred ceRNA regulatory networks for 22 cancer types and a pan-cancer ceRNA network based on data from The Cancer Genome Atlas. To make these networks accessible to the biomedical community, we present SPONGEdb, a database offering a user-friendly web interface to browse and visualize ceRNA interactions and an application programming interface accessible by accompanying R and Python packages. SPONGEdb allows researchers to identify potent ceRNA regulators via network centrality measures and to assess their potential as cancer biomarkers through survival, cancer hallmark and gene set enrichment analysis. In summary, SPONGEdb is a feature-rich web resource supporting the community in studying ceRNA regulation within and across cancer types.

[1]  D. Galas,et al.  Gene Regulatory Networks , 2006 .

[2]  Xia Li,et al.  Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers , 2016, Oncotarget.

[3]  Hsien-Da Huang,et al.  miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions , 2017, Nucleic Acids Res..

[4]  K. Tomczak,et al.  The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge , 2015, Contemporary oncology.

[5]  Xiujie Chen,et al.  CHG: A Systematically Integrated Database of Cancer Hallmark Genes , 2020, Frontiers in Genetics.

[6]  Tsippi Iny Stein,et al.  The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses , 2016, Current protocols in bioinformatics.

[7]  Yunpeng Zhang,et al.  LncACTdb 2.0: an updated database of experimentally supported ceRNA interactions curated from low- and high-throughput experiments , 2018, Nucleic Acids Res..

[8]  David B. Blumenthal,et al.  BiCoN: Network-constrained biclustering of patients and omics data. , 2020, Bioinformatics.

[9]  Junpeng Zhang,et al.  Computational methods for identifying miRNA sponge interactions , 2016, Briefings Bioinform..

[10]  P. Finn,et al.  Hubs in biological interaction networks exhibit low changes in expression in experimental asthma , 2007, Molecular systems biology.

[11]  Lorenzo Farina,et al.  Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer , 2014, BMC Systems Biology.

[12]  Peng Wang,et al.  miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs , 2015, Database J. Biol. Databases Curation.

[13]  Martin Reczko,et al.  DIANA-LncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs , 2012, Nucleic Acids Res..

[14]  Ryan Miller,et al.  WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research , 2017, Nucleic Acids Res..

[15]  Hedi Peterson,et al.  g:Profiler—a web server for functional interpretation of gene lists (2016 update) , 2016, Nucleic Acids Res..

[16]  Panayiotis Tsanakas,et al.  DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts , 2015, Nucleic Acids Res..

[17]  Dong Wang,et al.  Competing endogenous RNA networks in human cancer: hypothesis, validation, and perspectives , 2016, Oncotarget.

[18]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[19]  Fei Wang,et al.  miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database , 2019, Nucleic Acids Res..

[20]  Matthew O. Jackson,et al.  Centrality measures in networks , 2016, Social Choice and Welfare.

[21]  Subbaya Subramanian,et al.  Competing endogenous RNA database , 2012, Bioinformation.

[22]  P. Pandolfi,et al.  The multilayered complexity of ceRNA crosstalk and competition , 2014, Nature.

[23]  Fang Zheng,et al.  Pathway Network Analysis of Complex Diseases Based on Multiple Biological Networks , 2018, BioMed research international.

[24]  Antonino Fiannaca,et al.  miRTissue ce: extending miRTissue web service with the analysis of ceRNA-ceRNA interactions , 2020, BMC Bioinformatics.

[25]  Tingting Shao,et al.  The mRNA related ceRNA–ceRNA landscape and significance across 20 major cancer types , 2015, Nucleic acids research.

[26]  Mary Goldman,et al.  Toil enables reproducible, open source, big biomedical data analyses , 2017, Nature Biotechnology.

[27]  Karthik Raman,et al.  The organisational structure of protein networks: revisiting the centrality–lethality hypothesis , 2013, Systems and Synthetic Biology.

[28]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[29]  Francisco Aparecido Rodrigues,et al.  Network Centrality: An Introduction , 2018, A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems.

[30]  Prahlad T. Ram,et al.  Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks , 2015, Genome research.

[31]  Marcel H. Schulz,et al.  Large-scale inference of competing endogenous RNA networks with sparse partial correlation , 2019, Bioinform..

[32]  Hsien-Da Huang,et al.  miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database , 2015, Nucleic Acids Res..

[33]  Jan Baumbach,et al.  On the performance of de novo pathway enrichment , 2017, npj Systems Biology and Applications.

[34]  Dirk Koschützki,et al.  How to identify essential genes from molecular networks? , 2009, BMC Systems Biology.

[35]  Raymond K. Auerbach,et al.  A User's Guide to the Encyclopedia of DNA Elements (ENCODE) , 2011, PLoS biology.

[36]  Peng Wang,et al.  LnCeVar: a comprehensive database of genomic variations that disturb ceRNA network regulation , 2019, Nucleic Acids Res..

[37]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[38]  Shaoli Das,et al.  lnCeDB: Database of Human Long Noncoding RNA Acting as Competing Endogenous RNA , 2014, PloS one.

[39]  Jianzhi Zhang,et al.  Why Do Hubs Tend to Be Essential in Protein Networks? , 2006, PLoS genetics.

[40]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[41]  Jean Claude Zenklusen,et al.  A Practical Guide to The Cancer Genome Atlas (TCGA) , 2016, Statistical Genomics.

[42]  Debora S. Marks,et al.  miRcode: a map of putative microRNA target sites in the long non-coding transcriptome , 2012, Bioinform..

[43]  T. Mikkelsen,et al.  Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. , 2013, Cell reports.

[44]  Christian F. A. Negre,et al.  Eigenvector centrality for characterization of protein allosteric pathways , 2017, Proceedings of the National Academy of Sciences.

[45]  Rachael P. Huntley,et al.  QuickGO: a web-based tool for Gene Ontology searching , 2009, Bioinform..

[46]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[47]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[48]  Subbaya Subramanian,et al.  Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation , 2014, Front. Genet..

[49]  Richard Bonneau,et al.  Multi-study inference of regulatory networks for more accurate models of gene regulation , 2018, bioRxiv.

[50]  Marcel H. Schulz,et al.  JAMI: fast computation of conditional mutual information for ceRNA network analysis , 2018, Bioinform..

[51]  Sam Griffiths-Jones,et al.  miRBase: the microRNA sequence database. , 2006, Methods in molecular biology.

[52]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[53]  Ning Sun,et al.  Reconstructing transcriptional regulatory networks through genomics data , 2009 .

[54]  Xuerui Yang,et al.  The number of titrated microRNA species dictates ceRNA regulation , 2018, Nucleic acids research.

[55]  Brian Craft,et al.  Visualizing and interpreting cancer genomics data via the Xena platform , 2020, Nature Biotechnology.