A new approach to quantized feedback control systems

[1]  Z. Yao An H_2 Approach to Networked Control System , 2008 .

[2]  Yue Dong,et al.  Network-based Robust H_∞ Control of Systems with State-delay and Uncertainty , 2007 .

[3]  Fuwen Yang,et al.  H∞ control for networked systems with random communication delays , 2006, IEEE Trans. Autom. Control..

[4]  Lihua Xie,et al.  The sector bound approach to quantized feedback control , 2005, IEEE Transactions on Automatic Control.

[5]  Dong Yue,et al.  Network-based robust H ∞ control of systemswith uncertainty , 2005 .

[6]  Qiang Ling,et al.  Stability of quantized control systems under dynamic bit assignment , 2005, IEEE Transactions on Automatic Control.

[7]  Raja Sengupta,et al.  An H/sub /spl infin// approach to networked control , 2005, IEEE Transactions on Automatic Control.

[8]  Panos J. Antsaklis,et al.  Guest Editorial Special Issue on Networked Control Systems , 2004, IEEE Trans. Autom. Control..

[9]  Graham C. Goodwin,et al.  A moving horizon approach to Networked Control system design , 2004, IEEE Transactions on Automatic Control.

[10]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[11]  Huijun Gao,et al.  H ∞ model reduction for discrete time-delay systems: delay-independent and dependent approaches , 2004 .

[12]  N. Elia,et al.  Quantized feedback stabilization of non-linear affine systems , 2004 .

[13]  Fabio Fagnani Chaotic Quantized Feedback Stabilizers: The Scalar Case , 2004, Commun. Inf. Syst..

[14]  Bruce A. Francis,et al.  Quadratic stabilization of sampled-data systems with quantization , 2003, Autom..

[15]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[16]  Richard H. Middleton,et al.  Networked control design for linear systems , 2003, Autom..

[17]  Huijun Gao,et al.  Comments and further results on "A descriptor system approach to H∞ control of linear time-delay systems" , 2003, IEEE Trans. Autom. Control..

[18]  Feng-Li Lian,et al.  Modelling and optimal controller design of networked control systems with multiple delays , 2003 .

[19]  H. Ishii,et al.  Remote control of LTI systems over networks with state quantization , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[20]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[21]  Bruce A. Francis,et al.  Limited Data Rate in Control Systems with Networks , 2002 .

[22]  F. Fagnani,et al.  Stability analysis and synthesis for scalar linear systems with a quantized feedback , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[23]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[24]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[25]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[26]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[27]  K. Loparo,et al.  Active probing for information in control systems with quantized state measurements: a minimum entropy approach , 1997, IEEE Trans. Autom. Control..

[28]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[29]  M. Sznaier,et al.  Feedback control of quantized constrained systems with applications to neuromorphic controllers design , 1994, IEEE Trans. Autom. Control..

[30]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .