High-gain fractional disturbance observer control of uncertain dynamical systems

Abstract Disturbance observer-based control allows to compensate unknown inputs, however, in most cases, requiring their integer-order differentiability. In this paper, a novel disturbance observer-based state feedback controller is proposed to compensate a more general class of fractional-, but not necessarily integer-order, differentiable unknown inputs. The proposed fractional PI-like structure yields precise conditions for feedback gain tuning. Remarkably, the resulting controller rejects non-differentiable disturbances with a smooth controller, guaranteeing robustness, an outstanding features for tracking tasks, under a prescribed practical stability regimen. A comparison to a fractional sliding mode observer is conducted via simulations to highlight the reliability of the proposed scheme.

[1]  V. Parra‐Vega,et al.  Fractional-Order Nonlinear Disturbance Observer Based Control of Fractional-Order Systems , 2018, Journal of Computational and Nonlinear Dynamics.

[2]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[3]  Yoichi Hori,et al.  Vibration Suppression Using Single Neuron-Based PI Fuzzy Controller and Fractional-Order Disturbance Observer , 2007, IEEE Transactions on Industrial Electronics.

[4]  Shabnam Pashaei,et al.  A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. , 2016, ISA transactions.

[5]  Vicente Parra-Vega,et al.  Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances , 2017 .

[6]  Yan Liu,et al.  Variable high-gain disturbance observer design with online adaption of observer gains embedded in numerical integration , 2012, Math. Comput. Simul..

[7]  Toshio Fukuda,et al.  Design of a nonlinear disturbance observer , 2000, IEEE Trans. Ind. Electron..

[8]  Vicente Parra-Vega,et al.  Finite-time disturbance observer via continuous fractional sliding modes , 2018 .

[9]  Carl J. Kempf,et al.  Disturbance observer and feedforward design for a high-speed direct-drive positioning table , 1999, IEEE Trans. Control. Syst. Technol..

[10]  Dirk Söffker,et al.  Robust control approach for input–output linearizable nonlinear systems using high‐gain disturbance observer , 2014 .

[11]  Y. Chen,et al.  Fractional Order Disturbance Observer for Robust Vibration Suppression , 2004 .

[12]  Vicente Parra-Vega,et al.  Robust control of wind turbines based on fractional nonlinear disturbance observer , 2020 .

[13]  Hassan K. Khalil,et al.  Nonlinear Output-Feedback Tracking Using High-gain Observer and Variable Structure Control, , 1997, Autom..

[14]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[15]  Hassan K. Khalil,et al.  High-gain observers in nonlinear feedback control , 2009, 2009 IEEE International Conference on Control and Automation.

[16]  Chung Choo Chung,et al.  High-Gain Disturbance Observer-Based Backstepping Control With Output Tracking Error Constraint for Electro-Hydraulic Systems , 2015, IEEE Transactions on Control Systems Technology.

[17]  I. Petersen,et al.  High gain observers applied to problems in the stabilization of uncertain linear systems, disturbance attenuation and N∞ optimization , 1988 .

[18]  Hassan K. Khalil,et al.  Adaptive output feedback control of robot manipulators using high-gain observer , 1997 .

[19]  Y. Hori,et al.  Backlash vibration suppression in torsional system based on the fractional order Q-filter of disturbance observer , 2004, The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC '04..

[20]  Wen-Hua Chen,et al.  Disturbance observer based control for nonlinear systems , 2004 .

[21]  Xiao-Song Yang Practical stability in dynamical systems , 2000 .

[22]  Igor Podlubny,et al.  On Fractional Order Disturbance Observer , 2003 .

[23]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[24]  A. Luo,et al.  Fractional Dynamics and Control , 2011 .

[25]  Kiyoshi Ohishi,et al.  Wideband Force Control by Position-Acceleration Integrated Disturbance Observer , 2008, IEEE Transactions on Industrial Electronics.

[26]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[27]  Hassan K. Khalil,et al.  Output feedback stabilization using super‐twisting control and high‐gain observer , 2018, International Journal of Robust and Nonlinear Control.

[28]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[29]  Alain Oustaloup,et al.  The CRONE toolbox for Matlab , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[30]  Chengyu Cao,et al.  Handling of nonlinear systems using filtered high‐gain output feedback controller , 2018 .

[31]  Ian R. Petersen,et al.  High-gain observer approach to disturbance attenuation using measurement feedback , 1988 .

[32]  Lei Guo,et al.  Disturbance-Observer-Based Control and Related Methods—An Overview , 2016, IEEE Transactions on Industrial Electronics.

[33]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[34]  Jing Wang,et al.  Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance, , 2018, Mechatronics.

[35]  V. Parra‐Vega,et al.  Non-smooth convex Lyapunov functions for stability analysis of fractional-order systems , 2018, Trans. Inst. Meas. Control.

[36]  Aldo-Jonathan Munoz-Vazquez,et al.  Quadratic Lyapunov functions for stability analysis in fractional-order systems with not necessarily differentiable solutions , 2018, Syst. Control. Lett..

[37]  Hassan K. Khalil,et al.  Output feedback sampled-data control of nonlinear systems using high-gain observers , 2001, IEEE Trans. Autom. Control..

[38]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[39]  O. Martínez-Fuentes,et al.  A high-gain observer with Mittag-Leffler rate of convergence for a class of nonlinear fractional-order systems , 2019, Commun. Nonlinear Sci. Numer. Simul..

[40]  Yan Shi,et al.  Disturbance-Observer-Based Robust Synchronization Control for a Class of Fractional-Order Chaotic Systems , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[41]  Tao Yu,et al.  Perturbation observer based fractional-order PID control of photovoltaics inverters for solar energy harvesting via Yin-Yang-Pair optimization , 2018, Energy Conversion and Management.

[42]  A. Tornambè,et al.  High-gain observers in the state and estimation of robots having elastic joints , 1989 .

[43]  Tao Yu,et al.  Adaptive fractional-order PID control of PMSG-based wind energy conversion system for MPPT using linear observers , 2018, International Transactions on Electrical Energy Systems.

[44]  Shuyi Shao,et al.  Adaptive neural control for an uncertain fractional-order rotational mechanical system using disturbance observer , 2016 .